
GLYPH-X
a super regular RISC architecture

Michael Clark

May 4, 2025 DRAFT

Contents
1. Architecture 2

1.1. Introduction . 2
1.1.1. load-store . 3
1.1.2. registers . 3
1.1.3. memory . 3

1.2. Overview . 4
1.3. Instruction format . 5

1.3.1. instruction templates . 5
1.3.2. instruction size encoding . 6
1.3.3. instruction forms — 16-bit . 6

1.4. Constant stream . 7
1.5. Register file . 8
1.6. Example pipeline . 9

2. Instructions 10
2.1. Instruction listing — 16-bit . 10

2.1.1. break . 10
2.1.2. j . 10
2.1.3. b . 10
2.1.4. ibj . 11
2.1.5. jalib.i64 . 11
2.1.6. jtlib.i64 . 11
2.1.7. movib.i64 . 12
2.1.8. movi.i64 . 12
2.1.9. addi.i64 . 12
2.1.10. srli.i64 . 12
2.1.11. srai.i64 . 13
2.1.12. slli.i64 . 13
2.1.13. addib.i64 . 13
2.1.14. leapc.i64 . 13
2.1.15. loadpc.i64 . 14
2.1.16. storepc.i64 . 14
2.1.17. load.i64 . 14
2.1.18. store.i64 . 14
2.1.19. compare.i64 . 15
2.1.20. logic.i64 . 15
2.1.21. pin.i64 . 16

2

Contents

2.1.22. and.i64 . 16
2.1.23. or.i64 . 16
2.1.24. xor.i64 . 16
2.1.25. add.i64 . 17
2.1.26. srl.i64 . 17
2.1.27. sra.i64 . 17
2.1.28. sll.i64 . 17
2.1.29. sub.i64 . 18
2.1.30. mul.i64 . 18
2.1.31. div.i64 . 18
2.1.32. illegal . 18

3. Assembler 19
3.1. Introduction . 19
3.2. Concepts . 19

3.2.1. assembly file . 19
3.2.2. relocatable object file . 19
3.2.3. file header . 19
3.2.4. program header . 20
3.2.5. section header . 20
3.2.6. sections . 20
3.2.7. program linking . 20
3.2.8. linker script . 20

3.3. Directives . 21
3.4. Pseudo-instructions . 22
3.5. Calling convention . 23

3.5.1. calling convention — 16-bit . 23

A. Appendix 24
A.1. Opcode summary — 16-bit . 25

1

1. Architecture

1.1. Introduction
this section gives a brief introduction to RISC architectures.

A RISC1 machine is a type of general-purpose computer with the characteristic that it
has a reduced set of instructions in contrast to a CISC2 machine. A RISC machine is
Turing complete meaning it can perform any computation that a Turing machine can,
given enough time and memory. a Turing machine3 is a theoretical model of computation.

a RISC machine has a set of instructions which comprise basic operations such as: load-
from-memory, store-to-memory, add, subtract, compare, plus conditional branch and un-
conditional branch instructions et cetera; which one can imagine as a list of instructions
on a paper tape. each instruction has an opcode, which is a unique binary pattern that
identifies the operation, plus several operands, which are arguments to the instruction.

register-0 = load-from-memory at tape-address-0

register-1 = load-from-memory at tape-address-1

register-2 = add register-0 and register-1

store-to-memory register-2 at tape-address-2

some instructions have operands that point to values inside of registers in a register-file
which is like a close filing cabinet containing cards with numbers on them, and some of
these numbers are addresses that point to values in main-memory which is like a larger
but slower filing cabinet. some of these values are immediate values which are small
numbers listed inside of the instructions on the paper tape.

the paper tape is just a way conceptualize a list of instructions stored in main-memory.
there is a special register called PC short for program counter, which points to the
current position on the tape. after each instruction executes the tape is advanced to the
next instruction and the program counter is incremented, until it encounters a branch
instruction which causes it to move forwards or backwards to a different position on the
tape. branch instructions can be conditional or unconditional. conditional branches are
selectively executed based on the results of a comparison instruction.

1Reduced Instruction Set Computer
2Complex Instruction Set Computer
3Alan M. Turing, Proceedings of the London Mathematical Society, Series 2, Volume 42, pp. 230–265.

2

1. Architecture

1.1.1. load-store
a load-store architecture is a way to characterize RISC architectures where most instruc-
tions have simple operands that point to values held in registers, plus load and store
instructions to retrieve and commit values to main memory. a load-store architecture
alleviates the need to add complex addressing modes, plus intput-output to peripherals
and secondary storage use MMIO4 to avoid needing special Input/Output instructions.

1.1.2. registers
registers are temporary storage used to fill input and output operands for the ALU 5

before and after execution of instructions. registers are organized as a word-addressable
store where each register number refers to XLEN ∈ {64, 128} bits of data. XLEN is a
parameter that specifiess the width of registers in bits.

register 3
register 2
register 1
register 0

0 XLEN

Figure 1.1.: organization of register storage.

1.1.3. memory
main memory is primary storage which in modern computers is most likely DRAM 6.
main memory is organized as a byte-addressable store where each address refers to a byte
which is 8-bits of data. ALEN is a parameter that specifies the width of addresses in bits.

address 24
address 16
address 8
address 0

0 ALEN

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

byte-0 byte-7

Figure 1.2.: organization of main-memory storage.

4MMIO - Memory-mapped I/O.
5ALU – Arithmetic logic unit.
6DRAM – Dynamic random-access memory.

3

1. Architecture

1.2. Overview
glyph is a super regular RISC architecture that encodes constants in a secondary stream
accessed via an immediate base register that points at immediate blocks containing con-
stants accessed via a constant address mode. the immediate base register branches like
the program counter, and procedure calls and returns set and restore (pc,ib) together.

glyph uses relative address vectors in its link register which is different to typical RISC
architectures. glyph does this so that the branch instructions can fit (pc,ib) into the a
single link register for compatibility with traditional RISC architectures. glyph achieves
this by packing two relative (pc,ib) displacements into a relative address vector7.

immediate blocks can be switched using the immediate block branch instruction. im-
mediate blocks, unlike typical RISC architectures, mean that most relocations are word
sized like CISC architectures, and can use C-style structure packing and alignment rules.

this list outlines some differentiating elements of the super regular RISC architecture:

• variable length instruction format supporting 16, 32, 64, and 128-bit instructions.

• 16-bit compressed instruction packets can access 8 registers.

• (pc,ib) is a program counter and immediate base register address vector.

• link register contains a packed relative (pc,ib) address vector to function entry.

• ibj immediate-block-jump adds a relative address to the immediate base register.

• lib load-immediate-block uses an unsigned displacement to access constants.

• jalib jump-and-link-immediate-block or call links address vector and adds con-
stants to (pc,ib) and is used to branch the program counter and immediate base
register at the same time for calling procedures.

• jtlib jump-to-link-immediate-block or ret subtracts link vector from and adds
constants to (pc,ib) and is used to branch the program counter and immediate
base register at the same time for returning from called procedures.

• pin pack-indirect packs two absolute addresses as relative address vector from
(pc,ib) and is used for calling absolute addresses such as virtual functions.

7the architecture defines two parameters: ALEN and XLEN, which respectively to refer to width of
addresses and width of general purpose registers in bits. when XLEN > ALEN×2 it is possible to pack
absolute addresses instead of relative addresses, as would be the case where ALEN=64 and XLEN=128.

4

1. Architecture

1.3. Instruction format
glyph has a variable length instruction format supporting 16, 32, 64, and 128-bit instruc-
tion packets. the instruction packet has been designed to use a super regular scheme,
whereby successive instruction packets extend the fields in the previous packet.

1.3.1. instruction templates
the variable length instruction format has a single base format where fields in the tem-
plate instruction form are extended by successive instruction packets.

1 06 215 7
sz[1:0]opcode[4:0]operand[8:0]

Figure 1.3.: instruction template — 16-bit.

1 06 215 7
sz[1:0]opcode[4:0]operand[8:0]

sz[3:2]opcode[9:5]operand[17:9]

Figure 1.4.: instruction template — 32-bit.

1 06 215 7
sz[1:0]opcode[4:0]operand[8:0]

sz[3:2]opcode[9:5]operand[17:9]

sz[5:4]opcode[14:10]operand[26:18]

sz[7:6]opcode[19:15]operand[35:27]

Figure 1.5.: instruction template — 64-bit.

1 06 215 7
sz[1:0]opcode[4:0]operand[8:0]

sz[3:2]opcode[9:5]operand[17:9]

sz[5:4]opcode[14:10]operand[26:18]

sz[7:6]opcode[19:15]operand[35:27]

sz[9:8]opcode[24:20]operand[44:36]

sz[11:10]opcode[29:25]operand[53:45]

sz[13:12]opcode[34:30]operand[62:54]

sz[15:14]opcode[39:35]operand[71:63]

Figure 1.6.: instruction template — 128-bit.

5

1. Architecture

1.3.2. instruction size encoding
the variable length instruction format has a 2-bit size field in a fixed position in every
16-bit instruction packet, somewhat inspired by LEB128, to reduce the complexity of
variable length instruction size decoding.

Instruction Size Size Fields
16-bit {00}
32-bit {01,11}
64-bit {10,11,11,11}
128-bit {11,11,11,11,11,11,11,11}

Table 1.1.: Variable-length instruction size fields

1.3.3. instruction forms — 16-bit
the 16-bit instructions forms are super regular in that operand and opcode bits do not
overlap and the number and complexity of the formats is reduced so that vectorized
instruction decoding is easier in software. the scheme is designed so that 1-bit of coding
space in the larger packet can be used to extend register sizes for the 16-bit ops.

1 06 2715

00opcode[4:0]imm[5:0]

Figure 1.7.: 16-bit large immediate.

1 06 212 715 13

00opcode[4:0]imm[5:0]rc[2:0]

Figure 1.8.: 16-bit one operand with immediate.

1 06 29 712 1015 13

00opcode[4:0]imm[2:0]rb[2:0]rc[2:0]

Figure 1.9.: 16-bit two operand with immediate.

1 06 29 712 1015 13

00opcode[4:0]ra[2:0]rb[2:0]rc[2:0]

Figure 1.10.: 16-bit three operand.

6

1. Architecture

1.4. Constant stream
glyph seperates the instruction stream into two streams, one with instructions and one
with constants. the instruction stream is addressed with the program counter (pc) and
the constant stream is addressed with the immediate base (ib) register.

instruction stream (pc-relative)

instruction packet

pc . . .15 7 6 2 1 0

operands code size

constant stream (ib-relative)

immediate block

. . .

ib8 0 1 2 3 4 5 6 7

ib16 0 1 2 3

ib32 0 1

ib64 0

ib-relative constants

Figure 1.11.: program counter and immediate base register.

immediate blocks are aligned memory blocks addressed by the immediate base register.

immediate blocks can be navigated by branching the constant stream independently us-
ing the immediate-block-jump instruction, or together with the program counter using
procedure call and return instructions that set and restore (pc,ib) via a link register that
contains a packed relative address vector. the use of packed relative address vectors is
for backward compatibility with a single link register.

for procedure calls and returns, the instruction and constant streams are set at the same
time using the call and return instructions; jump-and-link-immediate-block, jump-to-link-
immediate-block, which add and subtract relative address vectors to (pc,ib), the program
counter and the immediate base register. the pack-indirect instruction allows absolute
(pc,ib) addresses to be packed into a relative address vector for indirect calls.

the instruction forms only use bonded register slots for immediate operands and operand
bits do not overlap opcode bits. the use of immediate blocks means large immediate
constants can all be accessed with short references encoded inside of register slots for
instructions that use an immediate block relative addressing mode.

7

1. Architecture

1.5. Register file
the glyph register file is extensible due to the variable length instruction format and
supports a different number of registers depending on the instruction size.

• 16-bit instruction packet can access 8 registers with up to 3 operands.

• 32-bit instruction packet can access 64 registers with up to 3 operands.

• 64-bit instruction packet can access 64 registers with up to 6 operands.

the register state accessible by the 16-bit instruction packet is comprised of:

• program counter register (aligned to 2 bytes).

• immediate base register (aligned to 64 bytes).

• 8 ×general purpose registers (r0 through r7).

• 1 ×predicate register (flag).

the following diagram shows the register state accessible by the 16-bit instruction packet:

r7
r6
r5
r4
r3
r2
r1
r0

0 ALEN

XLEN

ib
pc

flag

000000

0

Figure 1.12.: register state accessible by 16-bit instruction packet.

the use of ALEN 8 and XLEN 9 parameters is to indicate that the width of addresses can
be less than the width of the general purpose registers.

8ALEN refers to the width of addresses in bits.
9XLEN refers to the width of general purpose registers in bits.

8

1. Architecture

1.6. Example pipeline
an illustrative micro-architecture is proposed based on the classic 5-stage RISC micro-
architecture with the addition of an operand fetch stage and a constant memory port.
this revised 6-stage micro-architecture is composed of the following pipeline stages:

• IF — instruction fetch: reads instructions from memory into a fetch buffer.

• ID — instruction decode: decodes instruction length, opcode, and operands.

• OF — operand fetch: reads operands from register file and constant memory.

• EX — execute: performs logical operations or arithmetic on the operands.

• MA — memory access: loads data from or stores data to memory.

• WB — writeback : writes results back to the register file.

a simplified micro-architecture using those pipeline stages might look like this: this ex-
ample omits hazard detection and forwarding logic for the sake of simplicity.

IF – instruction fetch

ID – instruction decode

OF – operand fetch

EX – execute

MA – memory access

WB – writeback

instruction memory – IM

constant memory – KM

data memory – DM

register file – RF

Figure 1.13.: sample 6-stage micro-architecture with support for constant memory.

9

2. Instructions

2.1. Instruction listing — 16-bit

2.1.1. break
15 7

imm9

uimm

6 2

opcode

00000

1 0

size

00 break uimm9

the break instruction causes a debugger trap. program counter and trap cause are saved
to privileged registers for the operating system to dispatch to a debugger and the program
counter is set to a trap vector address.

2.1.2. j
15 7

imm9

simm

6 2

opcode

00001

1 0

size

00 j simm9

the j or jump instruction is an unconditional branch instruction that adds a relative
immediate address to the program counter. the resulting program counter address is
[pc+ simm9× 2 + 2].

pc += simm9 * 2 + 2

2.1.3. b
15 7

imm9

simm

6 2

opcode

00010

1 0

size

00 b simm9

the b or branch instruction is a conditional branch instruction that adds a relative im-
mediate address to the program counter. if the flag register has been set by a compare
instruction, the resulting program counter address is [pc+ simm9×2+2], otherwise the
program counter is advanced normally.

if flag:

pc += simm9 * 2 + 2

10

2. Instructions

2.1.4. ibj
15 7

imm9

simm

6 2

opcode

00011

1 0

size

00 ibj simm9

the ibj or immediate-block-jump instruction adds a 64-bit relative address to the im-
mediate base register. the resulting immediate base address is [ib+ simm9× 64].

ib += simm9 * 64

2.1.5. jalib.i64
15 13

rc

rc

12 7

imm6

uimm

6 2

opcode

00100

1 0

size

00 jalib rc, ib64(uimm6*8)

the jalib or jump-and-link-immediate-block instruction loads a 64-bit constant addressed
by [ib+uimm6×8] containing a i32x2 relative address vector, which it adds it to (pc,ib),
then saves the relative address vector in the rc register.

tmp = (i32x2)[ib + uimm6 * 8]

{rpc,rib} = (i32x2)tmp

pc += rpc + 2

ib += rib

r[rc] = tmp

2.1.6. jtlib.i64
15 13

rc

rc

12 7

imm6

uimm

6 2

opcode

00101

1 0

size

00 jtlib rc, ib64(uimm6*8)

the jtlib or jump-to-link-immediate-block instruction loads a 64-bit constant addressed
by [ib+uimm6× 8] containing a i32x2 relative address vector, then subtracts the i32x2
relative address vector in the rc register from it, and adds the result to (pc,ib).

{rpc,rib} = (i32x2)r[rc]

{dpc,dib} = (i32x2)[ib + uimm6 * 8]

pc += dpc - rpc

ib += dib - rib

11

2. Instructions

2.1.7. movib.i64
15 13

rc

rc

12 7

imm6

uimm

6 2

opcode

00110

1 0

size

00 movib.i64 rc, ib64(uimm6*8)

the movib or move-immediate-block instruction loads a 64-bit constant addressed by
[ib+ uimm6× 8] then saves it to the rc register.

r[rc] = (i64)[ib + uimm6 * 8]

2.1.8. movi.i64
15 13

rc

rc

12 7

imm6

simm

6 2

opcode

00111

1 0

size

00 movi.i64 rc, simm6

the movi or move-immediate instruction sign-extends the immediate value in simm6
then saves the result in the rc register.

r[rc] = simm6

2.1.9. addi.i64
15 13

rc

rc

12 7

imm6

simm

6 2

opcode

01000

1 0

size

00 addi.i64 rc, simm6

the addi or add-immediate instruction sign-extends the immediate value in simm6 then
adds it to the rc register.

r[rc] += simm6

2.1.10. srli.i64
15 13

rc

rc

12 7

imm6

uimm

6 2

opcode

01001

1 0

size

00 srli.i64 rc, uimm6

the srli or shift-right-logical-immediate instruction performs a logical right shift by
uimm6 bits of the value in the rc register. zeros are copied into the left most bits.

r[rc] = (u64)r[rc] >> uimm6

12

2. Instructions

2.1.11. srai.i64
15 13

rc

rc

12 7

imm6

uimm

6 2

opcode

01010

1 0

size

00 srai.i64 rc, uimm6

the srai or shift-right-arithmetic-immediate instruction performs an arithmetic right shift
by uimm6 bits of the value in the rc register. the sign is copied into the left most bits.

r[rc] = (i64)r[rc] >> uimm6

2.1.12. slli.i64
15 13

rc

rc

12 7

imm6

uimm

6 2

opcode

01011

1 0

size

00 slli.i64 rc, uimm6

the slli or shift-left-logical-immediate instruction performs a logical left shift by uimm6
bits of the value in the rc register. zeros are copied into the right most bits.

r[rc] = r[rc] << uimm6

2.1.13. addib.i64
15 13

rc

rc

12 7

imm6

uimm

6 2

opcode

01100

1 0

size

00 addib.i64 rc, ib32(uimm6*4)

the addib or add-immediate-block-constant instruction loads a 32-bit constant addressed
by [ib+ uimm6× 4], which it sign-extends to 64-bits, then adds to the rc register.

r[rc] += (i32)[ib + uimm6 * 4]

2.1.14. leapc.i64
15 13

rc

rc

12 7

imm6

uimm

6 2

opcode

01101

1 0

size

00 leapc.i64 rc, ib32(uimm6*4)(pc)

the leapc or load-effective-address-pc instruction loads a 32-bit constant addressed by
[ib+ uimm6× 4], which it sign-extends to 64-bits, adds it to the program counter, and
saves the result in the rc register.

r[rc] = pc + (i32)[ib + uimm6 * 4]

13

2. Instructions

2.1.15. loadpc.i64
15 13

rc

rc

12 7

imm6

uimm

6 2

opcode

01110

1 0

size

00 loadpc.i64 rc, ib32(uimm6*4)(pc)

the loadpc instruction loads a 32-bit constant addressed by [ib + uimm6 × 4] which
it sign-extends to 64-bit, adds it to the program counter to form an address, then loads
a 64-bit value from memory at that address and saves the result in the rc register.

r[rc] = (i64)[pc + (i32)[ib + uimm6 * 4]]

2.1.16. storepc.i64
15 13

rc

rc

12 7

imm6

uimm

6 2

opcode

01111

1 0

size

00 storepc.i64 rc, ib32(uimm6*4)(pc)

the storepc instruction loads a 32-bit constant addressed by [ib + uimm6 × 4] which
it sign-extends to 64-bit, adds it to the program counter to form an address, then stores
to memory at that address a 64-bit value from the rc register.

(i64)[pc + (i64)[ib + uimm6 * 4]] = r[rc]

2.1.17. load.i64
15 13

rc

rc

12 10

rb

rb

9 7

imm3

uimm

6 2

opcode

10000

1 0

size

00 load.i64 rc, (uimm3*8)(rb)

the load instruction computes the address [rb + uimm3 × 8] then loads a 64-bit value
from memory at that address and saves the result in the rc register.

r[rc] = (i64)[r[rb] + uimm3 * 8]

2.1.18. store.i64
15 13

rc

rc

12 10

rb

rb

9 7

imm3

uimm

6 2

opcode

10001

1 0

size

00 store.i64 rc, (uimm3*8)(rb)

the store instruction computes the address [rb+ uimm3× 8] then stores a 64-bit value
to memory at that address containing a 64-bit value from the rc register.

(i64)[r[rb] + uimm3 * 8] = r[rc]

14

2. Instructions

2.1.19. compare.i64
15 13

rc

rc

12 10

rb

rb

9 7

imm3

uimm

6 2

opcode

10010

1 0

size

00 cmp.i64 rc, rb, fun3

the compare instruction performs a comparison between the value in rb and rc then saves
the result in the flag register. the compare opcode is also used to perform conditional
move whereby the rb register is copied into the rc if the flag register is set. the type of
comparsion in fun3 can be one of: 0 →less than (signed), 1 →greather or equal (signed),
2 →equal, 3 →not equal, 4 →less than (unsigned), 5 →greater or equal (unsigned), or
6 →conditional move.

match fun3

| lt -> flag = (i64)r[rc] < (i64)r[rb]

| ge -> flag = (i64)r[rc] >= (i64)r[rb]

| eq -> flag = r[rc] = r[rb]

| ne -> flag = r[rc] != r[rb]

| ltu -> flag = (u64)r[rc] < (u64)r[rb]

| geu -> flag = (u64)r[rc] >= (u64)r[rb]

| mov -> if (flag) r[rc] = r[rb]

2.1.20. logic.i64
15 13

rc

rc

12 10

rb

rb

9 7

imm3

uimm

6 2

opcode

10011

1 0

size

00 logic.i64 rc, rb, fun3

the logic instruction performs a logic operation on the value in the rb register then stores
the result in the rc register. the type of logic operations in fun3 can be one of: 0 →move,
1 →logical not, 2 →negate, 3 →bswap, 4 →count trailing zeros, 5 →count leading zeros,
6 →count population, or 7 →sign extend.

match fun3

| mov -> r[rc] = r[rb]

| not -> r[rc] = ~r[rb]

| neg -> r[rc] = -r[rb]

| bswap -> r[rc] = bswap(r[rb])

| ctz -> r[rc] = ctz(r[rb])

| clz -> r[rc] = clz(r[rb])

| ctpop -> r[rc] = ctpop(r[rb])

| sext -> r[rc] = sext(r[rb])

15

2. Instructions

2.1.21. pin.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

10100

1 0

size

00 pin.i64 rc, rb, ra

the pin or pack-indirect instruction packs two absolute addresses as an i32x2 (pc,ib)
relative address vector. the register ra is subtracted from the program counter + 2, and
the register rb is subtracted from the immediate base register, and the results are packed
into an i32x2 relative address vector and saved to the register rc.

rpc = (i32)(pc - r[ra] + 2)

rib = (i32)(ib - r[rb])

r[rc] = (i32x2){rpc,rib}

2.1.22. and.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

10101

1 0

size

00 and.i64 rc, rb, ra

the and instruction performs a logical-and of the register rb and the register ra and saves
the result in the register rc.

r[rc] = r[rb] & r[ra]

2.1.23. or.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

10110

1 0

size

00 or.i64 rc, rb, ra

the or instruction performs a logical-or of the register rb and the register ra and saves
the result in the register rc.

r[rc] = r[rb] | r[ra]

2.1.24. xor.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

10111

1 0

size

00 xor.i64 rc, rb, ra

the xor instruction performs a logical-exclusive-or of the register rb and the register ra
and saves the result in the register rc.

r[rc] = r[rb] ^ r[ra]

16

2. Instructions

2.1.25. add.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11000

1 0

size

00 add.i64 rc, rb, ra

the add instruction adds the rb register to the ra register and saves the result in the rc
register.

r[rc] = r[rb] + r[ra]

2.1.26. srl.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11001

1 0

size

00 srl.i64 rc, rb, ra

the srl or shift-right-logical instruction performs a logical right shift of the value in the
rb register by the number of bits in register ra then saves the result in the rc register.
zeros are copied into the right most bits.

r[rc] = (u64)r[rb] >> r[ra]

2.1.27. sra.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11010

1 0

size

00 sra.i64 rc, rb, ra

the sra or shift-right-arithmetic instruction performs an arithmetic right shift of the
value in the rb register by the number of bits in register ra then saves the result in the
rc register. sign is copied into the right most bits.

r[rc] = (i64)r[rb] >> r[ra]

2.1.28. sll.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11011

1 0

size

00 sll.i64 rc, rb, ra

the sll or shift-left-logical instruction performs a logical left shift of the value in the rb
register by the number of bits in register ra then saves the result in the rc register.

r[rc] = r[rb] << r[ra]

17

2. Instructions

2.1.29. sub.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11100

1 0

size

00 sub.i64 rc, rb, ra

the sub instruction subtracts the ra register from the rb register and saves the result in
the rc register.

r[rc] = r[rb] - r[ra]

2.1.30. mul.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11101

1 0

size

00 mul.i64 rc, rb, ra

the mul instruction performs signed multiplication of the rb register with the ra register
and saves the result in the rc register.

r[rc] = r[rb] * r[ra]

2.1.31. div.i64
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11110

1 0

size

00 div.i64 rc, rb, ra

the div instruction performs signed division of the rb register by the ra register and
saves the result in the rc register. division by zero causes a divide by zero exception.

r[rc] = r[rb] / r[ra]

2.1.32. illegal
15 7

imm9

uimm

6 2

opcode

11111

1 0

size

00 illegal uimm9

the illegal instruction causes an illegal instruction trap. program counter and trap cause
are saved to privileged registers for the operating system to dispatch to an illegal in-
struction handler and the program counter is set to a trap vector address.

18

3. Assembler

3.1. Introduction
this glyph assembly language reference begins with an introduction to assembler and
linker concepts, followed by sections describing the glyph assembler directives, and
pseudo-instruction aliases. section 2 contains a complete listing of instruction.

3.2. Concepts
this section covers assembler high level concepts required to understand the concepts
involved in assembling and linking executable code from source files.

3.2.1. assembly file
an assembly file contains assembly language directives, macros and instructions. it can
be emitted by a compiler or it can be handwritten. an assembly file is the input file to
the assembler. the extensions for assembly files are .s.

3.2.2. relocatable object file
relocatable object files contain compiled object code and data emitted by the assembler.
an object file cannot be run, rather it is used as input to the linker as a step towards
producing an executable file. the extension for object files is .o.

3.2.3. file header
an assembler file has a file header that contains magic to indicate how the file is for-
matted, the architecture of the binary, the endianness of the binary; little-endian in the
case of glyph, the file type (relocatable object, executable, shared library), the number of
program headers and their offsets in the file, the number of section headers and their
offsets in the file, plus fields indicating the file format version and various other details.

19

3. Assembler

3.2.4. program header
program headers provide size and offsets of loadable segments within an executable or
shared library along with protection attributes used by the operating system (read, write
and exec). program headers are not present in relocatable object files and are primarily
for use by the operating system to and dynamic linker to map code and data into memory.

3.2.5. section header
section headers provide size, offset, type, alignment and flags for the sections contained
within the binary file. section headers are not required to execute a static binary but
are necessary for dynamic linking and program linking. various section types refer to
the location of the symbol table, relocations and dynamic symbols in the binary file.

3.2.6. sections
an object file is made up of multiple sections, with each section corresponding to distinct
types of executable code or data. there are a variety of different section types. this list
contains the four most common sections:

• .text is a read-only section containing executable code

• .const is a read-only section containing immediate blocks

• .data is a read-write section containing global or static variables

• .rodata is a read-only section containing read-only variables

• .bss is a read-write section containing uninitialized data

3.2.7. program linking
program linking is the process of reading multiple relocatable object files, merging the
sections from each of the source files, calculating the new addresses for symbols and
applying relocation fixups to text or data that is pointed to in relocation entries.

3.2.8. linker script
linker scripts are text source files that are optionally input to the linker containing rules
for the linker to use when calculating the load address and alignment of the various
sections when creating an executable output file. the extension for linker scripts is .ld.

20

3. Assembler

3.3. Directives
the assembler implements a number of directives that control the assembly of instruc-
tions into object files. these directives give the ability to include arbitrary data, align
data, export symbols, switch sections, define constants and emit metadata.

the following table lists glyph assembler directives:

Directive Arguments Description

Data directives

.byte expression-list 8-bit comma separated words

.short expression-list 16-bit comma separated words

.long expression-list 32-bit comma separated words

.quad expression-list 64-bit comma separated words

.octa expression-list 128-bit comma separated words

.string “string” emit string

.zero integer emit zeroes

Alignment directives

.align pow2 [,pad val=0] [,max] align to power of 2

.balign bytes [,pad val=0] byte align

Symbol directives

.globl symbol name,const name emit symbol (global scope)

.local symbol name,const name emit symbol (local scope)

Section directives

.text emit .text section or make current

.const emit .const section or make current

.data emit .data section or make current

.rodata emit .rodata section or make current

.bss emit .bss section or make current

.common symbol name,size,align emit common object to .bss section

.section section name emit section (default .text) or make current

Miscellaneous directives

.equ name, value constant definition

.file “filename” emit filename symbol

.ident “string” emit identification string

.size symbol,symbol emit symbol size

.type symbol,@function emit symbol type

Table 3.1.: Assembler directives

21

3. Assembler

3.4. Pseudo-instructions
the assembler implements a number of convenience psuedo-instruction aliases that are
formed from regular instructions, but have implicit or deduced arguments.

the following table lists glyph assembler pseudo instruction aliases:

Pseudo-instruction Expansion Description
nop or.i64 r0,r0,r0 no-operation
li rc, expression (several expansions) load immediate
la rc, symbol (several expansions) load address
call symbol jalib ibcall-reloc(text-label,const-label) procedure call
ret jtlib ibret-reloc(block-entry-label) procedure return
cmp.lt.i64 rc, rb compare.i64 rc, rb, lt compare less than (signed)
cmp.gt.i64 rc, rb compare.i64 rb, rc, lt compare greater than (signed)
cmp.le.i64 rc, rb compare.i64 rb, rc, ge compare less or equal (signed)
cmp.ge.i64 rc, rb compare.i64 rc, rb, ge compare greater or equal (signed)
cmp.eq.i64 rc, rb compare.i64 rc, rb, eq compare equal
cmp.ne.i64 rc, rb compare.i64 rc, rb, ne compare not equal
cmp.ltu.i64 rc, rb compare.i64 rc, rb, ltu compare less than (unsigned)
cmp.gtu.i64 rc, rb compare.i64 rb, rc, ltu compare greater than (unsigned)
cmp.leu.i64 rc, rb compare.i64 rb, rc, geu compare less or equal (unsigned)
cmp.geu.i64 rc, rb compare.i64 rc, rb, geu compare greater or equal (unsigned)
cmov.i64 rc, rb compare.i64 rc, rb, mov conditional move
mov.i64 rc, rb logic.i64 rc, rb, mov copy register
not.i64 rc, rb logic.i64 rc, rb, not logical not
neg.i64 rc, rb logic.i64 rc, rb, neg signed negate
bswap.i64 rc, rb logic.i64 rc, rb, bswap byte swap
ctz.i64 rc, rb logic.i64 rc, rb, ctz count trailing zeros
clz.i64 rc, rb logic.i64 rc, rb, clz count leading zeroes
ctpop.i64 rc, rb logic.i64 rc, rb, ctpop count population
sext.i64 rc, rb logic.i64 rc, rb, sext sign extend

Table 3.2.: Pseudo instructions

22

3. Assembler

3.5. Calling convention

3.5.1. calling convention — 16-bit
the 16-bit instruction packet, while intended to be used in conjunction with the 32-bit
opcodes, is designed as a complete subset, so there is an ABI variant that targets a
subset using only the 16-bit opcodes.

the register assignment for the 16-bit subset was chosen with this rationale:

• 2 blocks of 4 contiguous non-volatile callee-save and volatile caller-save registers.

• 3 special registers, 2 argument registers, 1 temporary register, and 3 save registers.

• 3 save registers to avoid excessive spilling around function calls.

• 1 temporary register to avoid spilling arguments to free a temporary.

the calling convention for the 16-bit subset is as follows:

• immediate base ib is set by call instructions and must point to a valid immediate
block on function entry. function symbols are exported with two labels; one in the
.text section, and one in the .const section. immediate base must be restored to
the entry value in the function epilogue before it can be restored by ret.

• argument registers a0 and a1 are used for the first two arguments, and the re-
maining arguments are passed on the stack. return value is places in a0 and a1,
temporary register t0 is a volatile register, and frame pointer (if enabled) uses s0.
there are two more non-volatile callee-save registers, s1 and s2.

the following table outlines the 16-bit register allocation showing register name alias,
description, and non-volatile callee-save or volatile caller-save status.

name alias description save

ib immediate base callee
r0 sp stack pointer callee
r1 s0/fp saved register 0 / frame pointer callee
r2 s1 saved register 1 callee
r3 s2 saved register 2 callee
r4 t0 temporary register 0 caller
r5 a0 argument register 0 caller
r6 a1 argument register 1 caller
r7 ra return address / (pc,ib) link vector caller

Table 3.3.: 16-bit register assignment

23

24

A. Appendix

A. Appendix

A.1. Opcode summary — 16-bit
15 13 12 10 9 7 6 2 1 0

uimm 00000 00 break uimm9

simm 00001 00 j simm9

simm 00010 00 b simm9

simm 00011 00 ibj simm9

rc uimm 00100 00 jalib.i64 rc, ib64(uimm6*8)

rc uimm 00101 00 jtlib.i64 rc, ib64(uimm6*8)

rc uimm 00110 00 movib.i64 rc, ib64(uimm6*8)

rc simm 00111 00 movi.i64 rc, simm6

rc simm 01000 00 addi.i64 rc, simm6

rc uimm 01001 00 srli.i64 rc, uimm6

rc uimm 01010 00 srai.i64 rc, uimm6

rc uimm 01011 00 slli.i64 rc, uimm6

rc uimm 01100 00 addib.i64 rc, ib32(uimm6*4)

rc uimm 01101 00 leapc.i64 rc, ib32(uimm6*4)(pc)

rc uimm 01110 00 loadpc.i64 rc, ib32(uimm6*4)(pc)

rc uimm 01111 00 storepc.i64 rc, ib32(uimm6*4)(pc)

rc rb uimm 10000 00 load.i64 rc, (uimm3*8)(rb)

rc rb uimm 10001 00 store.i64 rc, (uimm3*8)(rb)

rc rb fun3 10010 00 compare.i64 rc, rb, fun3

rc rb fun3 10011 00 logic.i64 rc, rb, fun3

rc rb ra 10100 00 pin.i64 rc, rb, ra

rc rb ra 10101 00 and.i64 rc, rb, ra

rc rb ra 10110 00 or.i64 rc, rb, ra

rc rb ra 10111 00 xor.i64 rc, rb, ra

rc rb ra 11000 00 add.i64 rc, rb, ra

rc rb ra 11001 00 srl.i64 rc, rb, ra

rc rb ra 11010 00 sra.i64 rc, rb, ra

rc rb ra 11011 00 sll.i64 rc, rb, ra

rc rb ra 11100 00 sub.i64 rc, rb, ra

rc rb ra 11101 00 mul.i64 rc, rb, ra

rc rb ra 11110 00 div.i64 rc, rb, ra

uimm 11111 00 illegal uimm9

25

