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Preface

this document introduces a RISC architecture designed with simplicity as its dominating
principle, along with several features not yet present in mainstream RISC architectures:

* a compression technique for split instruction and constant streams.
* avariable-length instruction format designed for vectorized decoding.

* an efficient frontier between hardware synthesis and software translation.

the document begins with a general introduction to RISC architectures, including principal
elements such as load-store operation, memory, registers, instructions, and constants. it then
presents an overview of the proposed architecture, followed by sections on program streams,
the variable-length instruction format, the instruction set, its assembly syntax, and the pro-
gramming language calling convention.

this document does not simply present an architecture that is a reimplementation of existing
ideas; rather, it introduces a novel architecture with an instruction coding scheme optimized
for efficient parallel decoding in hardware or software, combined with contemporary prac-
tice in instruction semantics.

this work is intended for computer architects, systems programmers, students of computing
machinery, and anyone interested in the evolution of RISC design. by the end of the doc-
ument, readers should be able to reason about computer programs at the instruction level
and understand the logic behind the architecture’s design choices—with enough detail to
implement the architecture in hardware or software.



1. Architecture

1.1. Introduction

this section gives a brief introduction to RISC architectures.

A RISC! machine is a type of general-purpose computer with the characteristic that it has a
reduced set of instructions in contrast to a CISC? machine. A RISC machine is Turing com-
plete meaning it can perform any computation that a Turing machine can, given enough time
and memory. a Turing machine [11] is a theoretical model of computation.

a RISC machine has a set of instructions which comprise basic operations such as: load-from-
memory, store-to-memory, add, subtract, compare, plus conditional branch and unconditional
branch instructions et cetera; which one can imagine as a list of instructions on a paper tape.
each instruction has an opcode, which is a unique binary pattern that identifies the operation,
plus several operands, which are arguments to the instruction.

register-0 = load-from-memory at tape-address-0

register-1 = load-from-memory at tape-address-1

register-2 = add register-0 and register-1
store-to-memory register-2 at tape-address-2

some instructions have operands that point to values inside of registers in a register-file which
is like a close filing cabinet containing cards with numbers on them, and some of these num-
bers are addresses that point to values in main-memory which is like a larger but slower filing
cabinet. some of these values are immediate values which are small numbers listed inside of
the instructions on the paper tape.

the paper tape is just a way conceptualize a list of instructions stored in main-memory. there
is a special register called PC short for program counter, which points to the current position
on the tape. after each instruction executes the tape is advanced to the next instruction and
the program counter is incremented, until it encounters a branch instruction which causes it
to move forwards or backwards to a different position on the tape. branch instructions can
be conditional or unconditional. conditional branches are selectively executed based on the
results of a comparison instruction.

1Reduced Instruction Set Computer
2Complex Instruction Set Computer



1. Architecture

1.1.1. load-store

a load-store architecture [3] is a way to characterize RISC architectures where most instruc-
tions have simple operands that point to values held in registers, plus load and store instruc-
tions to retrieve and commit values to main memory. a load-store architecture alleviates the
need to add complex addressing modes, plus intput-output to peripherals and secondary
storage use MMIO® to avoid needing special Input/Output instructions.

1.1.2. registers

registers are temporary storage used to fill input and output operands for the ALU* before and
after execution of instructions. registers are organized as a word-addressable store where
each register number refers to XLEN € {64,128} bits of data. XLEN is a parameter that
specifiess the width of registers in bits.

XLEN 0

register 0
register 1
register 2
register 3

e o e e e e e e el m - I L L L L L L L L L L L L L e e e e el m - !

Figure 1.1.: organization of register storage.

1.1.3. memory

main memory is primary storage which in modern computers is most likely DRAM®. main
memory is organized as a byte-addressable store where each address refers to a byte which
is 8-bits of data. ALEN is a parameter that specifies the width of addresses in bits.

ALEN 0 byte-7 byte-0
address 0
address 8
address 16
address 24

e o e e e e e e el m - I L L L L L L L L L L L L L e e e e el m - !

Figure 1.2.: organization of main-memory storage.

3MMIO - Memory-mapped I/0.
*ALU - Arithmetic logic unit.
>DRAM - Dynamic random-access memory.



1. Architecture

1.1.4. instructions

instruction memory is a memory region dedicated to program instructions. it is organized as
a word-addressable store, similar to main memory, but is read-only and reserved exclusively
for instructions. this configuration is typically referred to as a Harvard architecture [1], in
contrast to a Von Neumann architecture [8], which uses a shared memory region for both
program instructions and data.

instruction words contain packets of 16-bits which are composed of size, opcode, and operand
fields. instruction packets can be appended together to form larger instruction words with
larger opcode and operand fields. section 1.4 provides details on the instruction template
and instruction forms.

15 716 211 0
operand(g.q] opcodes.o] $2[1:0]

Figure 1.3.: 16-bit instruction containing one packet.

15 716 211 0
operandyg.o) opcode4.] 52[1:0]
operand[y7.9] opcodefg.s] $2[3:2]

Figure 1.4.: 32-bit instruction containing two packets.

instruction words are packed together into instruction blocks containing instruction size in-
formation that is used to fuse them together to compose variable-length instructions [7].
instruction words can begin on any 16-bit aligned address. instruction memory is addressed
with displacements from the program counter called pc-relative addresses.

pcrel(3) pcrel(0)

instruction 0-3
instruction 4-7

e o e e e e e e el m - I L L L L L L L L L L L L L e e e e el m - !

Figure 1.5.: organization of instruction-memory with 16-bit instructions.

instruction 0-3 —
instruction 4—7 p—

Figure 1.6.: organization of instruction-memory with 16-bit and 32-bit instructions.



1. Architecture

1.1.5. constants

constant memory [10] is a memory region dedicated to constants. it is organized as a word-
addressable store like main-memory, but is read-only and restricted to constants. instructions
can refer to constants using ib-relative addresses inside instruction operands. section 1.3 pro-
vides more details on the split instruction and constant streams.

constant memory is addressed with displacements from the immediate base register called
ib-relative addresses which are stored inside instruction operand slots, are sized, scaled and
aligned addresses computed relative to the immediate base register, which is like a program
counter for constants. these diagrams show ib8(n) through ib64(n) ib-relative addresses
for access to 8-bit through to 64-bit constants respectively: note: ib-relative addresses alias a
single constant storage space containing all types.

ib8(7) ib8(0)

constant 0—7
constant 8—-15

e o e e e e e e el m - I L L L L L L L L L L L L L e e e e el m - !

Figure 1.7.: organization of ib8 constant-memory storage.

ib16(3) ib16(0)

constant 0-3

constant 4-7

| | l
e o e e e e e e el m - I L L L L L L L L L L L L L e e e e el m - !

Figure 1.8.: organization of ib16 constant-memory storage.

ib32(1) ib32(0)

constant 0—1
constant 2-3

e o e e e e e e el m - I L L L L L L L L L L L L L e e e e el m - !

Figure 1.9.: organization of ib32 constant-memory storage.

ib64(0)

constant 0
constant 1

e o e e e e e e el m - I L L L L L L L L L L L L L e e e e el m - !

Figure 1.10.: organization of ib64 constant-memory storage.



1. Architecture

1.2. Core concepts

glyph is a super regular RISC architecture that encodes constants in a secondary stream ac-
cessed via an immediate base register that points at immediate blocks containing constants
accessed via a constant address mode. the immediate base register branches like the program
counter, and procedure calls and returns set and restore (pc,ib) together.

glyph uses relative address vectors in its link register which is different to typical RISC archi-
tectures. glyph does this so that the branch instructions can fit (pc,ib) into the a single link
register for compatibility with traditional RISC architectures. glyph achieves this by packing
two relative (pc,ib) displacements into a relative address vector®.

immediate blocks can be switched using the immediate block branch instruction. immedi-
ate blocks, unlike typical RISC architectures, mean that most relocations are word sized like
CISC architectures, and can use C-style structure packing and alignment rules.

this list outlines some differentiating elements of the super regular RISC architecture:

* variable length instruction format supporting 16, 32, 64, and 128-bit instructions.

* 16-bit compressed instruction packets can access 8 registers.

* (pc,ib) is a program counter and immediate base register address vector.

* link register contains a packed relative (pc,ib) address vector to function entry.

* ibj immediate-block-jump adds a relative address to the immediate base register.

* movw move-word-immediate-block uses an unsigned displacement to access constants.

* jalib jump-and-link-immediate-block or call link function links address vector and
adds constants to (pc,ib) and is used to branch the program counter and immediate
base register at the same time for calling procedures.

* jtlib jump-to-link-immediate-block or return link function subtracts link vector from
and adds constants to (pc,ib) and is used to branch the program counter and immediate
base register at the same time for returning from called procedures.

* pin pack-indirect packs two absolute addresses as relative address vector from (pc,ib)
and is used for calling absolute addresses such as virtual functions.

the pin and 1link instructions form a modular arithmetic ring of relative address vectors,
due to their use of relative addresses. relative address vectors can be encrypted, decrypted,
and authenticated to form a verifiable chain of addresses for control flow integrity.

Sthe architecture defines two parameters: ALEN and XLEN, which respectively to refer to width of addresses and
width of general purpose registers in bits. when X LEN > ALEN x 2 it is possible to pack absolute addresses
instead of relative addresses, as would be the case where ALEN=64 and XLEN=128.



1. Architecture

1.3. Program streams

glyph seperates the stored programs into two streams, one with instructions and one with
constants [10]. the instruction stream is addressed with the program counter (pc) and the
constant stream is addressed with the immediate base (ib) register. this could be referred to
as split program stream Harvard architecture.

instruction stream (pc-relative)

instruction packet

pc |15 7|6 2|10| ______________ D B 1

operands code size

constant stream (ib-relative)

immediate block

ib8 0 | 1 2 3 4 | 5 6 7

ib16 0 1 2 3

ib32 0 1

ib64 0

ib-relative constants

Figure 1.11.: program counter and immediate base register.

instruction blocks are aligned memory blocks addressed by the program counter. instruction
memory is addressed with pc-relative addresses in instruction immediate values or indirectly
with constants accessed using ib-relative addresses stored inside instruction operand slots.

immediate blocks are aligned memory blocks addressed by the immediate base register. con-
stant memory is addressed with ib-relative addresses stored inside instruction operand slots,
which are sized, scaled, and aligned relative to the immediate base register.

the constant stream branches independently using the immediate-block-jump instruction to
update the immediate base register, or together with the program counter in procedure call
and return instructions that branch instruction and constants at the same time; jump-and-
link-immediate-block and jump-to-link-immediate-block add and subtract address vectors to
(pc,ib). the pack-indirect instruction allows absolute (pc,ib) addresses to be packed into an
address vector for indirect calls.

the instruction forms use bonded operand slots for immediate operands and operand bits do
not overlap opcode bits. the use of immediate blocks means large immediate constants can
all be accessed using short references encoded inside of operand slots for instructions that
use an immediate block relative addressing mode.



1. Architecture

1.4. Instruction format

instructions use a variable length format [7] with a 16-bit instruction packet that supports
16, 32, 64, and 128-bit instruction words. the instruction packet uses a super regular scheme,
whereby successive instruction packets extend the fields in the previous instruction packet [6].
instruction words can begin on any 16-bit aligned address.

1.4.1. instruction templates

the variable length instruction format has a single base format where fields in the template
instruction form are extended by successive instruction packets.

15

6

1 0

operand(g.o]

opcoders:o]

$2[1:0]

Figure 1.12.: instruction template — 16-bit.

15 6 211 0
operandig.o) opcodepy.o S2[1:0]
operandy 7.9 opcodergs] 52[3:2]

Figure 1.13.: instruction template — 32-bit.

15 6 211 0
operand(g.o] opcodes:o] $2[1:0]
operandj7.9] opcoderg.s] $2[3:2]

operand[yg.1g] opcodefi4:10] 52[5:4]
operand[ss.oz] opcodefig.1s) 52[7:6]

Figure 1.14.: instruction template — 64-bit.

15 6 211 0
operand[&o] opcode[4;0] $2[1:0]
operand[i7.9] opcoderg.s) $2[3:2]
operand[g:1g] opcodery4:10] $2[5:4]
operand[ss.ay) opcodey;g.15] 52[7:6]
operandi44.:36] opcodeag:20] 52[9:8]
operandis3.45] opcodepag.ps)  [SZ[11:10]
operandiey.s4] opcodefzgzo]  [SZ[13:12]
operand[y;.63] opcodesg.ss] S2[15:14]

Figure 1.15.: instruction template — 128-bit.
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1.4.2. instruction sizes

the variable length instruction format has a 2-bit size field inspired by LEB128 [4] in a fixed
position in every instruction packet, to reduce the complexity of size-decoding for variable
length instructions’. this table shows the size fields for the different instruction sizes:

Instruction size | Size vector
16-bit {00}
32-bit {01,11%}
64-bit {10,11,11,11%}
128-bit {11,11,11,11,11,11,11,11}

Table 1.1.: variable-length instruction size fields

1.4.3. instruction forms

the instructions forms are super regular in that operand and opcode bits do not overlap and
the number and complexity of the formats is reduced so that vectorized instruction decoding
is simple in both hardware and software. the scheme is designed so that 1-bit of coding space
in the larger packet can be used to extend register sizes.

16-bit instruction forms
this section details the layout of the 16-bit instruction forms:

15 716 211 0
immys.o) opcodes.o] 00

Figure 1.16.: 16-bit large immediate.

15 13]12 716 211 0
I'¢[2:0] immys.o) opcoders.] 00

Figure 1.17.: 16-bit one operand with immediate.

15 13|12 10| 9 716 211 0
rC2:0] rbya:01 immps;o] opcodes.o] 00

Figure 1.18.: 16-bit two operand with immediate.

15 13|12 10] 9 716 211 0
rC[2:0] b0 ra[2.0] opcoders.] 00

Figure 1.19.: 16-bit three operand.

7instructions are considered well-formed if the size field of subsequent packets has the value 11.
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32-bit instruction forms
this section details the layout of the 32-bit instruction forms:

6 211 0

15 7
opcodes:o] 01

immpg;o]

imm[y7.9] opcodefg.s] 11

Figure 1.20.: 32-bit large immediate.

211 0

15 13]12 716
opcoders.o] 01

C2:0] immys.q)

rC[5:3] immyi1.6] opcoderg.s] 11

Figure 1.21.: 32-bit one operand with immediate.

15 13|12 10| 9 716 211 0
C[2:0] 1b[2:0] immya.0] opcoders.o] 01
I((s:3] rbys:3) immys.3 opcoderg.s 11

Figure 1.22.: 32-bit two operand with immediate.

15 13[12 10] 9 716
IC[2:0] b2.0] rara;o]

opcoders.o] 01

rC[5:3] rbys.3] rafs:3) opcoderg:s 11

Figure 1.23.: 32-bit three operand.

1.4.4. instruction decoding
the instruction size encoding and field extension scheme has been designed to minimize
complexity for parallel decoding in hardware and software. the following table shows the
instruction width combinations for various width parallel instruction decoders.

Packets Bits | Bytes | Mcombos | 1082(N)
1-wide 16-bit 2 1 0
2-wide 32-bit 4 16 4
4-wide 64-bit 8 58 5.86
8-wide | 128-bit 16 574 9.16
16-wide | 256-bit 32 51904 15.66

Table 1.2.: instruction decode combinations




1. Architecture

1.5. Register file

the glyph register file is extensible due to the variable length instruction format and supports
a different number of registers depending on the instruction size.

* 16-bit instruction packet can access 8 registers with up to 3 operands.

* 32-bit instruction packet can access 64 registers with up to 3 operands.

* 64-bit instruction packet can access 64 registers with up to 6 operands.
the register state accessible by the 16-bit instruction packet is comprised of:

» program counter register (aligned to 2 bytes).
* immediate base register (aligned to 64 bytes).
* 8 Xgeneral purpose registers (rO through r7).

* 1 Xpredicate register (flag).

the following diagram shows the register state accessible by the 16-bit instruction packet:

ALEN 0

PC control
- registers
ib 9

XLEN 0
r0
r
r2
|'3 general

purpose
r4 registers

r5
ré
r7

} predicate

Figure 1.24.: register state accessible by 16-bit instruction packet.

the use of ALEN® and XLEN® parameters is to indicate that the width of addresses can be less
than the width of the general purpose registers.

8ALEN refers to the width of addresses in bits.
9XLEN refers to the width of general purpose registers in bits.

10



1. Architecture

1.6. Example pipeline

an illustrative micro-architecture is proposed based on the classic 5-stage RISC micro-architecture [9]
with the addition of an operand fetch stage and a constant memory port. this revised 6-stage
micro-architecture is composed of the following pipeline stages:

* |F — instruction fetch: reads instructions from memory into a fetch buffer.
* |ID — instruction decode: decodes instruction length, opcode, and operands.
* OF — operand fetch: reads operands from register file and constant memory.

* EX — execute: performs logical operations or arithmetic on the operands.

MA — memory access: loads data from or stores data to memory.

* WB — writeback: writes results back to the register file.

a simplified micro-architecture using those pipeline stages might look like this: this example
omits hazard detection and forwarding logic for the sake of simplicity.

instruction memory — IM IF — instruction fetch

Y

ID — instruction decode

Y

constant memory — KM — OF — operand fetch

Y

EX - execute

data memory — DM MA — memory access

register file — RF WB - writeback

Figure 1.25.: sample 6-stage micro-architecture with support for constant memory.

11



2. System

2.1. System registers

the architecture provides several control and status registers for floating-point control and
status, time, trap handling, address translation, timers, inter-thread interrupts, and debug.

no. | name | description
user-level registers

0x00 | fpcontrol | floating-point control
0x01 | fpstatus floating-point status
0x02 | ctime clock time

0x03 | cfreq clock frequency
privileged trap registers

0x10 | tcontrol trap control

O0x11 | tstatus trap status

0x12 | tscratch trap scratch

0x13 | tepc trap exception program counter
0x14 | teib trap exception immediate base
0x15 | tval trap value

0x16 | tcause trap cause

0x17 | tack trap acknowledge

0x18 | thpc trap handler program counter
0x19 | thib trap handler immediate base

privileged system registers
0x20 | scontrol system control

0x21 | sstatus system status

0x22 | sfeature system feature

0x23 | sptr system page table root
0x24 | saddr system thread address
0x25 | starget system target address
0x26 | smessage | system message interrupt
0x27 | stimer system deadline timer
0x28 | sie system interrupt enable
0x29 | sip system interrupt pending
privileged debug registers

0x31 | dstatus debug status

0x32 | dcycle debug cycle counter
0x33 | dinst debug instruction counter
0x34 | dstop debug stop instruction
0x35 | dfetch monitored fetch address
0x36 | dread monitored read address
0x37 | dwrite monitored write address

Table 2.1.: system registers

12



2. System

2.1.1. user-level registers

the section describes the user-level registers.

floating-point control (fpcontrol)

fpcontrol contains control information for floating-point operations. the RM field is a read-

write and contains the current floating-point rounding mode.
1 0

| | RM |
no. | name | description
0 RN round to nearest (even)
1 RD round down (towards —o0)
2 RU round up (towards +00)
3 RZ round towards zero (truncate)

Table 2.2.: floating-point control round mode field

floating-point status (fpstatus)

fpstatus contains status information for floating-point operations. the I, Z, U, 0, and
P fields are read-write and contain accrued floating-point exceptions.

4 3 2 1 0
| [plojufz[1]

no. name | description

1 <0 |1 invalid operation

1< 1| 7Z divide by zero

1«2 |U numeric underflow

1 3|0 numeric overflow

1 << 4| P inexact result

Table 2.3.: floating-point status flags

clock time (ctime)

ctime is a read-only register containing the wall-clock tick counter since power on in clock
tick units denoted by cfreq.

clock frequency (cfreq)
cfreq is a read-only register containing the wall-clock tick interval in picoseconds; 13’#

where f is the frequency in Hertz (Hz).

13



2. System

2.1.2. privileged trap registers

the section describes the privileged trap registers.

trap control (tcontrol)

tcontrol is a read-write register containing control bits. the I field is read-write and con-
trols whether system interrupts are enabled for this hardware thread.

|

no. name | description
1 <0 |1 system interrupt enable

Table 2.4.: trap control fields

trap status (tstatus)

tstatus contains status bits for the current trap. the T field is read-only and indicates
whether a timer interrupt is pending. the V field is read-only and indicates whether a virtual

interrupt is pending.
1 0

| [v]T]
no. name | description
1<<0 | T timer interrupt pending
1<«<1]|V virtual interrupt pending

Table 2.5.: trap status fields

trap scratch (tscratch)

tscratch is a read-write save register for use during trap handling.

trap exception program counter (tepc)

tepc is a read-only register which contains the program counter address before the trap.

trap exception immedidate base (teib)

teib is a read-only register which contains the immediate base address before the trap.

14



2. System

trap value (tval)

tval is a read-only register with a word indicating the identity of the trap, and may contain:

* the faulting instruction word for break and illegal instruction exceptions.
* the faulting address for access and page faults.
*» the message value for virtual interrupts.

* the system clock time for timer interrupts.

trap cause (tcause)

tcause is a read-only register that contains the cause of the current trap, and may contain:

no. | name | description
system exceptions

1 break-instruction | break instruction exception
2 illegal-instruction | illegal instruction exception
3 debug-monitor debug monitor exception

4 misaligned-fetch | fetch misaligned

5 misaligned-load load misaligned

6 misaligned-store store misaligned

7 access-fault-fetch | fetch access fault

8 access-fault-load load access fault

9 access-fault-store | store access fault

10 | page-fault-fetch fetch page fault
11 | page-fault-load load page fault

12 | page-fault-store store page fault
system interrupts

30 | timer-interrupt timer interrupt
31 | virtual-interrupt virtual interrupt
32 | interrupt-0 interrupt pin 0
63 | interrupt-31 interrupt pin 31

Table 2.6.: trap causes

trap acknowledge (tack)

tack is a write-only register where the trap cause is written to acknowledge the trap so that
interrupts are not delivered while state is being saved, and for double-faults to be detected.

trap handler program counter (thpc)

thpc is a read-write register containing the address of the system trap handler routine.

trap handler immediate base (thib)

thib is a read-write register containing the address of the system trap handler constants.

15
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2.1.3. privileged system registers

the section describes the privileged system registers.

system control (scontrol)

scontrol is a read-write register containing system control information. the A field controls
whether the user pages can be read or written by the supervisor. the E field controls whether
user pages can be executed by the supervisor. the P field controls whether page table pages
need physical maps and translate permissions. if enabled, then physical addresses must be
self-mapped with the T permission set on entries for pages that contain page tables.

2 1 0
| [P[E]A]
no. name | description
1 <<0]|A supervisor access to user pages disabled
1 << 1|E supervisor execute of user pages disabled
12 |P physical permissions feature enabled

Table 2.7.: system control fields

system status (sstatus)

sstatus is a read-only register containing system status. the U field indicates the processor

is operating in user-mode. this register cannot be read in user-mode so it will return zero.
0

|

no. name | description
10| U user mode

Table 2.8.: system status fields

system feature (sfeature)

sfeature is a read-only register containing system features. the C field indicates the capa-
bilities feature is present. the P field indicates the physical permissions feature is present.

10
| [Pc]
no. name | description
10| C capabilities check feature
1 <0 |P physical permissions feature

Table 2.9.: system feature fields
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system page table root (sptr)

sptr is a read-write register containing the page table root for address translation on this
hardware thread. the ASID field contains the address space identifier for the current thread.
the PPN field contains the physical page number of the page table root structure.

63 56 55 12 11 0
| zeroes | PPN ASID

system address (saddr)

saddr is a read-only register containing the unique system-wide address for this hardware
thread. the system-wide address is used as the target for inter-thread virtual interrupts.
system target (starget)

starget is a read-write register containing the system-wide address for a hardware thread
that is the target of an edge-triggered virtual interrupt. there are two special addresses:

* a target address of all-zeros is the boot service processor.

* a target address of all-ones is the broadcast address for all threads.

system message (smessage)

smessage is a write-only register that causes an edge-triggered virtual interrupt to be queued
to the hardware thread set in starget. virtual interrupts are marked pending in the V field
of the tstatus register. if interrupts are not enabled on the target hardware thread, the
virtual interrupt is delivered when interrupts are next enabled.

system timer (stimer)

stimer is a read-write register containing the deadline timer for this hardware thread. when
the system clock reaches the value in the register, a timer interrupt is triggered. timer inter-
rupts are marked pending in the T field of the tstatus register. if interrupts are not enabled
on this hardware thread, the timer interrupt is delivered when interrupts are next enabled.

system interrupt enable (sie)

sie is a read-write register that contains interrupt enable flags for 32 wired interrupt pins.

system interrupt pending (sip)

sip is a read-only register that contains interrupt pending flags for 32 wired interrupt pins.

17
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2.1.4. privileged debug registers

the section describes the privileged debug registers.

debug status (dstatus)

dstatus is a read-only register containing status bits for debug monitor execeptions.

3 2 1 0
| [W[R|F|[S]
no. name | description
1 <«0|S stopping instruction
1 << 1|F fetch monitor address
1 << 2|R load monitor address
1 <KK3 | W store monitor address

Table 2.10.: debug status fields

debug cycle counter (dcycle)

dcycle is a read-only register containing the number of cycles retired since power on.

debug instruction counter (dinst)

dinst is a read-only register containing the number of instructions retired since power on.

debug stop instruction (dstop)

dstop is a read-write register containing an instruction number to halt execution on and
raise a debug monitor exception.

debug monitor fetch (dfetch)

dfetch is a read-write register containing a memory fetch address to monitor for and halt
execution on and raise a debug monitor exception for a matching memory fetch address.
debug monitor read (dread)

dread is a read-write register containing the memory load address to monitor for and halt
execution on and raise a debug monitor exception for a matching memory load address.
debug monitor write (dwrite)

dwrite is a read-write register containing the memory store address to monitor for and halt
execution on and raise a debug monitor exception for a matching memory store address.

18
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2.2. Address translation

the architecture provides for page-based virtual to physical address translation using a page
table trie structure composed of index pages containing arrays of page table entries. a page
walker reads the structure from the root pointer to leaf entries to translate virtual addresses
into physical addresses. the architecture introduces the concept of a translation address
which is an address boxed with an address space prefix (AS) designed to provide a canonical
address form for user and supervisor virtual addresses as well as physical addresses.

2.2.1. page table structure

the section describes the dimensions for memory address translation and the trie-based page
table structure pointed to by the system page table root (sptr) register.

Page Page Page Virtual Page

Table | Number | Offset | Address | Index Page

Levels | Bits Bits Bits Entries | Sizes

4 9 12 44 — 48 | 512 4KiB, 2Mib, 1GiB

Table 2.11.: 64-bit page table dimensions

2.2.2. page table entries

page table entries are grouped into arrays within index pages which are selected by an index
derived from a portion of the virtual address. each entry contains a physical page number
along with several permission and metadata bits. the physical page number either points to
the next page table level for pointer entries or the translated physical address for leaf entries.

63 12 11 8 76543210
| physical page number | color [oa[c]x]x[u[e]v]

Figure 2.1.: 64-bit page table entry structure.

no. name | description
1 <0 |V valid

1 < 1]|R read
12| W write

1 <3 |X execute
1« 4| T translate
1«5 |G global

1 << 6|A accessed
1< 7|D dirty

Table 2.12.: 64-bit page table entry fields
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2.2.3. page table addresses

the page table translation system has three types of addresses: translation addresses, virtual
addresses and physical addresses. page table translation addresses have a 1 — 4 bit address
space prefix to allow them to contain user and supervisor virtual addresses as well as physical
addresses. the page table translation and lookup virtual address structure is as follows:

63 48 47 44 43 12 11 0
| sign extended | AS \ page number | page offset |

Figure 2.2.: 64-bit translation address structure.

no. name
0b0. user
0b10. supervisor
0b110. | physical

Table 2.13.: 1—4 bit translation address space prefixes.

63 48 47 39 38 30 29 21 20 12 1 0

sign extended | pnfo] | pnf1] | pnf2] | pn[3] | pageoffset |

Figure 2.3.: 64-bit lookup virtual address structure.

2.2.4. page table translation

the page table walker performs page table lookups to translate virtual addresses into physical
addresses. the page table walker reads the page table root pointer then walks the trie-based
page table structure to find a leaf entry containing a physical page address.

page table entries with the read, write and exec permission bits clear are interpreted as pointer
entries and contain a pointer to the next-level index page, otherwise they are interpreted as
leaf entries with a final translation. entries with the write bit set must have the read bit set.
entries without the accessed bit set will fault on read accesses. entries without the dirty bit set
will fault on write accesses. the global bit prevents sptr.ASID from being associated with TLB
entries. the color field is reserved for use by system software and the capabilities extension.

if the physical permissions feature sfeature.P is present and scontrol.P is enabled, then phys-
ical pages must be present in the page table with a self-mapping of their physical address
prefixed with (AS = physical) leading to a leaf page table entry containing its own address.
this is to allow physical page permissions to be checked. in addition to this, the physical
self-mappings for physical pages containing page table pages must have the translate bit set.

the page table lookup and virtual to physical address translation process are as follows:
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Algorithm 1 find page table entry for translation address

1: function FIND PAGE(type, level, ppn, ta)

2:

N

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

shift < level x pn_bits + po_bits
tpn « (ta >> shift) A ((1 << pn_bits) — 1)
pte «— LOAD((ppn << po_bits) + tpn x sizeof (PTE))
leaf < pte.RV pte. W V pte.X
sm «— PTE_RV PTE_W V PTE_X
if sfeature.P A scontrol.P A type = virtual then
pa < pte.ppn << po_shift
(sm, level) < FIND_PAGE(physical, num_levels — 1, sptr.ppn, pa)
if (leaf A pte.ppn # sm.ppn) V (—leaf A ~sm.T) then
raise fault
end if
end if
if —leaf Alevel > 0 then
return FIND_ PAGE(type, level — 1, pte.ppn, ta)
else if —leaf then
raise fault
end if
return (pte, sm, level)

20: end function

> calculate page number shift

> calculate translation page number
> load page table entry

> page table entry node type

> default self map page table entry
> load self mapping

> invalid self mapping

> follow pointer entry
> leaf entry not found

> return page table entry

Algorithm 2 translate virtual address to physical address

1: function TRANSLATE (op,va)

N

24:
25:
26:

if "CHECK_CANONICAL(va, va_bits) then
raise fault
end if
(pte,sm, level) « FIND_PAGE(virtual,num_levels — 1, sptr.ppn,va)
mask « ((1 << (level x pn_bits + po_bits)) — 1)
caps < colorperms[pte.color]
user « —((va >> (va_bits—1)) A 1)
if (-pte.V) V (pte.W A —pte.R) then
raise fault
else if (op.R A —pte.R) V (op.W A ~pte. W) V (op.X A —pteX) then
raise fault
else if (sm.R A —pte.R) V (sm.W A —pte.W) V (sm.X A —pte.X) then
raise fault
else if (cap.R Apte.R) V (cap.W A pte.W) V (cap X A pte.X) then
raise fault
else if (op.R A —pte.A) V (op.W A —pte.D) then
raise fault
else if —sstatus.U A —scontrol.E A user A op. X then
raise fault
else if —sstatus.U A —scontrol. A A user A op.(RV W) then
raise fault
else if (pte.ppn << po_bits) A mask # 0 then
raise fault
end if
return (pte.ppn << po_bits) + (va A mask)

27: end function

> check address is sign-extended

> find page table entry

> invalid write must have read
> invalid permissions

> invalid self map

> invalid capabilities

> invalid accessed or dirty

> invalid user page execute

> invalid user page access

> invalid superpage alignment
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2.3. Capabilities

the architecture provides an optional capabilities extension that includes several control and
status registers for permissions and capabilities enabled by color bits in page table entries.

no. | name | description
capability registers

0x40 | colorperms color permissions
0x41 | colorcaps color capabilities
capability matrix

0x50 | colormatrix0 color matrix for color 0

0x5f | colormatrix15 | color matrix for color 15

Table 2.14.: capability registers

color permissions (colorperms)

colorperms is a read-write register containing an array of 16 elements holding 4 page table
permission mask bits (negated). when set these bits mask page table permission bits based
on the page table entry color field. setting bits masks permissions. the default of zero as

unmasked is to provide full access by default for non capability aware system software.
63 60 3 0

s [ 1 [ [ [ [ [T [ [ T [T [ [ [Jem]

3210
2]

Figure 2.4.: color permission structure.

no. mnem | name description

1 << 0 |R ~read read permission for color-x
11| W ~write write permission for color-x
12 |X ~execute | execute permission for color-x
1 << 3|P ~physical | physical permission for color-x

Table 2.15.: color permission descriptions.
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color capabilities (colorcaps)

colorcaps is a read-write register containing an array of 16 elements holding 4 capability
bits (negated). when set these bits mask access to the debug, system, capabilites, and hyper-
visor sets of registers and instructions from program text pages based on the page table entry
color field. setting bits masks capabilities. the default of zero as unmasked is to provide full

access by default for non capability aware system software.
63 60 3 0

lees | [ T [ [ [ T T [ [ T [T [ [ Jw]

3210
HESE

Figure 2.5.: color capabilities structure.

no. mnem | name description

1< 0|D ~debug debug access from color-x
1<1(S ~system system access from color-x
12 ]|C ~capability | capability access from color-x
1 << 3| H ~hypervisor | hypervisor access from color-x

Table 2.16.: color permission descriptions.

color matrix (colormatrix0...colormatrix15)

colormatrix0...colormatrix15 are read-write registers containing arrays of 16 ele-
ments holding 4 (negated) permission bits. when set these bits mask page table permission
bits or branch execute permissions from executable pages based on the source page table
entry color-x, with source color in the register name, for memory access or branch to target

pages with page table entry color-y, with target color in the array index within each register.
63 60 3 0

eess] | [ [ [ L 1 [ [ [ ] ] [ [ Jem]

3210
[zl

Figure 2.6.: color matrix structure.

no. mnem | name description

1 << 0|R ~read load permission from color-x to color-y
1«1 | W ~write store permission from color-x to color-y

1 << 2| X ~execute | branch permission from color-x to color-y

Table 2.17.: color matrix desciptions.
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3.1. Instruction listing — 16-bit
3.1.1. break

15 7 6 2 1 0
imm9 opcode size
uimm 00000 00 break uimm9

the break instruction causes a debugger trap. program counter and trap cause are saved
to privileged registers for the operating system to dispatch to a debugger and the program
counter is set to a trap vector address.

3.1.2.
15 7 6 2 1 0
imm9 opcode size
simm 00001 00 jsimm9 x 2

the j or jump instruction is an unconditional branch instruction that adds a relative immediate
address to the program counter. the resulting program counter address is [pc +simm9 x 2].

pc = pc + simm9 * 2

3.13. b

15 7 6 2 1 0
imm9 opcode size
simm 00010 00 bsimm9 x 2

the b or branch instruction is a conditional branch instruction that adds a relative immediate
address to the program counter. if the flag register has been set by a compare instruction,
the resulting program counter address is [pc +simm9 x 2], otherwise the program counter is
advanced normally.

if flag:
pc = pc + simm9 * 2
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3.1.4. ibj

15 7 6 2 1 0
imm9 opcode size
simm 00011 00 ibjsimm9 x 64

the ibj or immediate-block-jump instruction adds a 64-bit relative address to the immediate
base register. the resulting immediate base address is [ib + simm9 x 64].

ib = ib + simm9 * 64

3.1.5. link
15 13 12 7 6 2 1 0
rc imm6 opcode size
fun uimm 00100 00 link.i64 f un3,ib64(uimmo6)

the link instruction loads a 64-bit constant addressed by [ib + uimm6 x 8] containing a
i32x2 relative address vector, which it adds it to (pc,ib), conditionally subtracts the source
link register (6 or r7), then conditionally adds the difference to the destination link register
(r6 or r7), depending on the value of fun3. the type of linkage in fun3 can be one of:

value | mnemonic | description link-type | dst-link | src-link
0 jib jump jump - -

1 - - B - -

2 jalib jump-and-link call r6 -

3 jalib jump-and-link call r7 -

4 jtlib jump-to-link ret - r6

5 jtlib jump-to-link ret - r7

6 jalaib jump-and-link-add | tail r6 -

7 jalaib jump-and-link-add | tail r7 -

Table 3.1.: Link instruction functions

lr = 0b110 + (fun3 & 1)
cval = const-mem<i32x2>[ib + uimm6 * 8]
dval = fun3 == jalaib 7 cval + auth-decrypt(reg<i32x2>[1lr]) : cval
lval = fun3 == jtlib 7 auth-decrypt (reg<i32x2>[1r]) : 0
(dpc,dib) = dval
(1pc,lib) = lval
pc = pc + dpc - 1pc
ib = ib + dib - 1lib
if fun3 == jalib or fun3 == jalaib:
reg[lr] = auth-encrypt(reg<i32x2>(dpc,dib))

the auth-encrypt and auth-decrypt functions are placeholders for authenticated encryption,
and decryption of relative address vectors. authentication failures should generate a trap for
the operating system to dispatch to a control flow integrity trap handler.
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3.1.6. movh
15 13 12 7 6 2 1 0
rc imm6 opcode size
rc uimm 00101 00 movh.i64 rc,ib32(uimmé6)

the movh or move-half-immediate-block instruction loads a 32-bit constant addressed by [ib+
uimmé6 x 4], which it sign-extends to 64-bits, then saves to the rc register.

reglrc] = const-mem<i32>[ib + uimm6 * 4]

3.1.7. movw

15 13 12 7 6 2 1 0

rc imm6 opcode size
re uimm 00110 00 movw.i64 rc,ib64(uimmo6)

the movw or move-word-immediate-block instruction loads a 64-bit constant addressed by
[ib + uimm6 x 8] then saves it to the rc register.

reglrc] = const-mem<i64>[ib + uimm6 * 8]

3.1.8. movi
15 13 12 7 6 2 1 0
rc immé6 opcode size
re simm 00111 00 movi.i64 rc,simm6

the movi or move-immediate instruction sign-extends the immediate value in simmé6 then
saves the result in the rc register.

reglrc] = simm6
3.1.9. addi
15 13 12 7 6 2 1 0
rc imm6 opcode size
re simm 01000 00 addi.i64 rc,simm6

the addi or add-immediate instruction sign-extends the immediate value in simmé6 then adds
it to the rc register.

reglrc] = reglrc] + simm6
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3.1.10. srli

15 13 12 7 6 2 1 0

rc imm6 opcode size

re uimm 01001 00 srli.i64 rc, uimm6

the srli or shift-right-logical-immediate instruction performs a logical right shift by uimmé6
bits of the value in the rc register. zeros are copied into the left most bits.

reglrc] = reg<u64>[rc] >> uimmé

3.1.11. srai

15 13 12 7 6 2 1 0

rc imm6 opcode size

rc uimm 01010 00 srai.i64 rc,uimmo6

the srai or shift-right-arithmetic-immediate instruction performs an arithmetic right shift by
uimmé bits of the value in the rc register. the sign is copied into the left most bits.

reglrc] = reg<i64>[rc] >> uimm6

3.1.12. slli

15 13 12 7 6 2 1 0
rc immé6 opcode size
re uimm 01011 00 slli.i64 rc,uimmo6

the slli or shift-left-logical-immediate instruction performs a logical left shift by uimmé6 bits of
the value in the rc register. zeros are copied into the right most bits.

reglrc] = reglrc] << uimmé

3.1.13. addh

15 13 12 7 6 2 1 0

rc imm6 opcode size
re uimm 01100 00 addh.i64 rc,ib32(uimmé6)

the addh or add-half-immediate-block instruction loads a 32-bit constant addressed by [ib +
uimm6 x 4], which it sign-extends to 64-bits, then adds to the rc register.

reglrc] = reglrc] + const-mem<i32>[ib + uimm6 * 4]
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3.1.14. leapc
15 13 12 7 6 2 1 0
rc imm6 opcode size
rc uimm 01101 00 leapc.i64 rc,ib32(uimm6)(pc)

the leapc or load-effective-address-pc instruction loads a 32-bit constant addressed by [ib +
uimm6 x 4], which it sign-extends to 64-bits, adds it to the program counter, and saves the
result in the rc register.

reglrc] = pc + const-mem<i32>[ib + uimmé * 4]

3.1.15. loadpc

15 13 12 7 6 2 1 0

rc imm6 opcode size
rc uimm 01110 00 loadpc.i64 rc,ib32(uimmé6)(pc)

the loadpc instruction loads a 32-bit constant addressed by [ib + uimm6 x 4] which it sign-
extends to 64-bit, adds it to the program counter to form an address, then loads a 64-bit
value from memory at that address and saves the result in the rc register.

reglrc] = mem<i64>[pc + const-mem<i32>[ib + uimm6 * 4]]

3.1.16. storepc

15 13 12 7 6 2 1 0

rc imm6 opcode size
re uimm 01111 00 storepc.i64 rc,ib32(uimme6)(pc)

the storepc instruction loads a 32-bit constant addressed by [ib + uimmé6 x 4] which it sign-
extends to 64-bit, adds it to the program counter to form an address, then stores to memory
at that address a 64-bit value from the rc register.

mem<i64>[pc + const-mem<i32>[ib + uimm6 * 4]] = reglrc]

3.1.17. load
15 13 12 10 9 7 6 2 1 0
rc rb imm3 opcode size
re rb uimm 10000 00 load.i64 rc, (uimm3 x 8)(rb)

the load instruction computes the address [rb + uimm3 x 8] then loads a 64-bit value from
memory at that address and saves the result in the rc register.

reglrc] = mem<i64>[regl[rb] + uimm3 * 8]
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3.1.18. store

15 13 12 0 9 7 6 2 1 0

rc rb imm3 opcode size
rc rb uimm 10001 00 store.i64 rc, (uimm3 x 8)(rb)

the store instruction computes the address [rb + uimm3 x 8] then stores a 64-bit value to
memory at that address containing a 64-bit value from the rc register.

mem<i64>[regl[rb] + uimm3 * 8] = reglrc]

3.1.19. compare

15 13 12 0 9 7 6 2 1 0

rc rb imm3 opcode size
rc rb fun 10010 00 cmp.i64 rc,rb, fun3

the compare instruction performs a comparison between the value in rb and rc then saves
the result in the flag register. the compare opcode is also used to perform conditional move
whereby the rb register is copied into the rc if the flag register is set. the type of comparsion
in fun3 can be one of:

value | mnemonic | description

0 It less than (signed)

1 ge greather or equal (signed)
2 eq equal

3 ne not equal

4 ltu less than (unsigned)

5 geu greater or equal (unsigned)
6 cmov conditional move

7 ncmov negated conditional move

Table 3.2.: Compare instruction functions

match fun3
1t -> flag = reg<i64>[rc] < reg<i64>[rb]
ge -> flag = reg<i64>[rc] >= reg<i64>[rb]
eq -> flag = reglrc] = reglrb]

ltu -> flag = reg<u64>[rc] < reg<u64>[rb]
geu -> flag = reg<u64>[rc] >= reg<u64>[rb]
cmov -> if flag:

|
|
|
| ne -> flag = reglrc] != reglrb]
|
|
|

reglrc] = reglrbl
| ncmov -> if not flag:
reglrc] = reglrbl
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3.1.20. logic
15 13 12 100 9 7 6 2 1 0
rc rb imm3 opcode size
rc rb fun 10011 00

logic.i64 rc,rb, fun3

the logic instruction performs a logic operation on the value in the rb register then stores the
result in the rc register. the type of logic operations in fun3 can be one of:

value | mnemonic | description

0 my move

1 not logical not

2 neg negate

3 bswap bswap

4 ctz count trailing zeros
5 clz count leading zeros
6 ctpop count population

7 sext sign extend

Table 3.3.: Logic instruction functions

match fun3
| mov  -> reglrc] = reglrb]
| not -> reglrc] = “reglrb]
| neg -> reglrc] = -reglrb]
| bswap -> reglrc] = bswap(reglrbl)
| ctz  -> reglrc] = ctz(reglrbl)
| clz  -> reglrc] = clz(reglrb]l)
| ctpop -> reglrc] = ctpop(reglrb]l)
| sext -> reglrc] = sext(reglrb]l)
3.1.21. pin
15 13 12 10 9 7 6 2 1 0
rc rb ra opcode size
rc rb ra 10100 00

pin.i64 rc,rb,ra

the pin or pack-indirect instruction packs two absolute addresses as an i32x2 (pc,ib) relative
address vector. the register ra is subtracted from the program counter, and the register rb is
subtracted from the immediate base register, and the results are packed into an i32x2 relative
address vector and saved to the register rc.

1lpc
lib

lval = (1lpc,lib)
reglrc] =

int<i32>(pc - reglral)
int<i32>(ib - reglrb]l)

auth-encrypt (lval)
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3.1.22. and

15 13 12 0 9 7 6 2 1 0

rc rb ra opcode size
re rb ra 10101 00 and.i64 rc,rb,ra

the and instruction performs a logical-and of the register rb and the register ra and saves the
result in the register rc.

reglrc] = reglrb]l & reglral

3.1.23. or
15 13 12 10 9 7 6 2 1 0
rc rb ra opcode size
rc rb ra 10110 00 or.i64rc,rb,ra

the or instruction performs a logical-or of the register rb and the register ra and saves the
result in the register rc.

reglrc] = reglrb] | reglral

3.1.24. xor

15 13 12 10 9 7 6 2 1 0

rc rb ra opcode size
re tb ra 10111 00 xor.i64 rc,rb,ra

the xor instruction performs a logical-exclusive-or of the register rb and the register ra and
saves the result in the register rc.

reglrc] = reglrb] -~ reglral
3.1.25. add
15 13 12 100 9 7 6 2 1 0
rc rb ra opcode size
re rb ra 11000 00 add.i64 rc,rb,ra

the add instruction adds the rb register to the ra register and saves the result in the rc register.

reglrc] = reglrb] + reglral
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3.1.26. srl

15 13 12 0 9 7 6 2 1 0

rc rb ra opcode size
re rb ra 11001 00 srl.i64 rc,rb,ra

the srl or shift-right-logical instruction performs a logical right shift of the value in the rb
register by the number of bits in register ra then saves the result in the rc register. zeros are
copied into the right most bits.

reglrc] = reg<u64>[rb] >> reglral

3.1.27. sra

15 13 12 10 9 7 6 2 1 0

rc rb ra opcode size
re rb ra 11010 00 sra.i64 rc,rb,ra

the sra or shift-right-arithmetic instruction performs an arithmetic right shift of the value in
the rb register by the number of bits in register ra then saves the result in the rc register. sign
is copied into the right most bits.

reglrc] = reg<i64>[rb] >> reglral

3.1.28. sll

15 13 12 10 9 7 6 2 1 0

rc rb ra opcode size
re rb ra 11011 00 sll.i64 rc,rb,ra

the sll or shift-left-logical instruction performs a logical left shift of the value in the rb register
by the number of bits in register ra then saves the result in the rc register.

reglrc] = reglrb] << reglral

3.1.29. sub

15 13 12 0 9 7 6 2 1 0

rc rb ra opcode size
re rb ra 11100 00 sub.i64 rc,rb,ra

the sub instruction subtracts the ra register from the rb register and saves the result in the rc
register.

reglrc] = reglrb]l - reglral
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3.1.30. mul

15 13 12 100 9 7 6 2 1 0
rc rb ra opcode size
re rb ra 11101 00 mul.i64 rc,rb,ra

the mul instruction performs signed multiplication of the rb register with the ra register and
saves the result in the rc register.

reglrc] = reglrb] * reglral

3.1.31. div

15 13 12 10 9 7 6 2 1 0
rc rb ra opcode size
rc rb ra 11110 00 div.i6é4 rc,rb,ra

the div instruction performs signed division of the rb register by the ra register and saves the
result in the rc register. division by zero causes the flag to be set and zero to be stored in the
rc register. a subsequent branch can handle the division by zero.

flag = reglral ==

if flag:
reglrc]

else:
reglrc] = reglrb] / reglral

0

3.1.32. illegal

15 7 6 2 1 0

imm9 opcode size

uimm 11111 00 illegal uimm9

the illegal instruction causes an illegal instruction trap. program counter and trap cause
are saved to privileged registers for the operating system to dispatch to an illegal instruction
handler and the program counter is set to a trap vector address.
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4.1. Introduction

this glyph assembly language reference begins with an introduction to assembler and linker
concepts and terminology, followed by sections describing the glyph assembler directives,
and pseudo-instruction aliases. section 3 contains a complete listing of instruction.

4.2. Concepts

this section covers assembler high level concepts required to understand the concepts in-
volved in assembling and linking executable code from source files. the terminology used in
this section is applicable to the PE/COFE ELF and Mach-O file formats.

4.2.1. assembly

assembly files contains assembly language directives, macros and instructions describing
program code and data. they can be handwritten or emitted by a compiler. an assembly file
is the input file to the assembler and the output from the assembler is an object file.

4.2.2. object

object files contain compiled relocatable object code and data emitted by the assembler. an
object file cannot be run, rather it is used as input to the linker in a program linking step
which combines them to produce an executable file or shared library.

4.2.3. archive

archive files contain collections of relocatable object files and are typically referred to as
static libraries. archive files use a simple format that appends together a set of object files
with an index listing the object files contained in the archive. thin archive files just contain
the index listing the object files without any associated data.

4.2.4. executable

executable files contain compiled relocatable object code and data that has been linked to-
gether by a linker in a program linking step using multple object files, archive files and shared
libraries as input. executable files can be statically or dynamically linked. dynamically linked
executables files express dependencies on shared libraries.
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4.2.5. shared library

shared library files contain compiled relocatable object code and data that have been linked
together by a linker in a program linking step using multple object files, archive files and
shared libraries as input. shared libraries are dynamically linked by a runtime linker, and
they express dependencies on other shared libraries which need to be loaded at runtime.

4.2.6. section

a section is a name for a region of code or data in an object file, executable file or shared
library file. the files can be made up of multiple sections where each section corresponds to
several types of executable code or data. this list contains the most common types:

* .text is a read-only section containing executable code

* .const is a read-only section containing immediate blocks

* .data is a read-write section containing global or static variables
* .rodata is a read-only section containing read-only variables

* .bss is a read-write section containing uninitialized data

4.2.7. segment

segments are loadable regions of code or data in an an executable or shared library. segments
describe virtual addresses, file offsets and memory access permissions for mapped sections.
in ELE a segment can map to one or more sections. in PE/COFF sections are mapped directly.
in Mach-O, sections are contained within a small set of specific segment types.

4.2.8. symbol

symbols are metadata table entries that contains a name with a mapping to an address.
symbols are present in object files and dynamic symbols are present in shared libraries and
executables. they can be referred to in relocation entries and debugging metadata.

4.2.9. relocation

relocations are metadata table entries used to update relocatable addresses during linking.
relocations contains a type, a file offset pointing to text or data, and a pointer to a symbol
name whose address needs to be updated during the linking step. relocations can be present
in object files and dynamic relocations are present in shared libraries and executables.

4.2.10. program linking

program linking is the process of combining multiple relocatable object files by merging and
aligning sections, resolving symbol references across files, assigning final symbol addresses,
applying relocation fixups using relocation entries, and adding debug metadata.
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4.3. Directives

the assembler implements a number of directives that control the assembly of instructions
into object files. these directives are based on the AT&T System V assembler [2] and the
GNU assembler [5], with some additions. they provide the ability to include arbitrary data,
align data, export symbols, switch sections, define constants, and emit metadata.

the following table lists glyph assembler directives:

Directive | Arguments | Description

Data directives

.byte expression-list 8-bit comma separated words
.short expression-list 16-bit comma separated words
.long expression-list 32-bit comma separated words
.quad expression-list 64-bit comma separated words
.octa expression-list 128-bit comma separated words
.string “string” emit string

.Zero integer emit zeroes

Alignment directives

.align pow2 [,pad_val=0] [,max] | align to power of 2

.balign bytes [,pad_val=0] byte align

Symbol directives

.globl symbol_name,const_name emit symbol (global scope)

.local symbol_name,const_name emit symbol (local scope)

Section directives

.text emit . text section or make current
.const emit . const section or make current
.data emit .data section or make current
.rodata emit .rodata section or make current
.bss emit . bss section or make current

. common symbol_name,size,align emit common object to . bss section
.section | section_name emit section (default .text) or make current
Miscellaneous directives

.equ name, value constant definition

.file “filename” emit filename symbol

.ident “string” emit identification string

.size symbol,symbol emit symbol size

.type symbol, @function emit symbol type

Table 4.1.: Assembler directives
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4.4. Pseudo-instructions

the assembler implements a number of convenience psuedo-instruction aliases that are formed
from regular instructions, but have implicit or deduced arguments.

the following table lists glyph assembler pseudo instruction aliases:

Pseudo-instruction

nop

11 rc, expression

la rc, symbol

call symbol

ret

jib.i64 ib64(uimmé6)
jalib.i64 rc, ib64(uimmo)
jtlib.i64 rc, ib64(uimmo6)
jalaib.i64 rc, ib64(uimmé6)
cmp.1lt.i64 rc, rb
cmp.gt.i64 rc, rb
cmp.le.i64 rc, rb
cmp.ge.i64 rc, rb
cmp.eq.i64 rc, rb
cmp.ne.i64 rc, rb
cmp.ltu.i64 rc, rb
cmp.gtu.ib4 rc, rb
cmp.leu.i64 rc, rb
cmp.geu.i64 rc, rb
cmov.i64 rc, rb
ncmov.i64 rc, rb

mov.i64 rc, rb

not.i64 rc, rb

neg.i64 rc, rb

bswap.i64 rc, rb

ctz.i64 rc, rb

clz.i64 rc, rb

ctpop.i64 rc, rb
sext.i64 rc, rb

Expansion

or.i64 r0,r0,r0

(several expansions)

(several expansions)

jalib. i64 ibcall(text-label,const-label)
jtlib.i64 ibret(text-label,const-label)
link.i64 ib64(uimm6), jib
link.i64 rc, ib64(uimm6), jalib
link.i64 rc, ib64(uimm6), jtlib
link.i64 rc, ib64(uimm6), jalaib
compare.ib4 rc, rb, 1t
compare.i64 rb, rc, 1t
compare.i64 rb, rc, ge
compare.i64 rc, rb, ge
compare.i64 rc, rb, eq
compare.i64 rc, rb, ne
compare.i64 rc, rb, 1tu
compare.i64 rb, rc, 1tu
compare.i64 rb, rc, geu
compare.i64 rc, rb, geu

compare. i64 rc, rb, cmov
compare. i64 rc, rb, ncmov
logic.i64 rc, rb, mov

logic.i64 rc, rb, not

logic.i64 rc, b, neg

logic.i64 rc, rb, bswap
logic.i64 rc, rb, ctz

logic.i64 rc, rb, clz

logic.i64 rc, rb, ctpop
logic.i64 rc, rb, sext

Description

no-operation

load immediate

load address

procedure call

procedure return
jump-immmediate-block
jump-and-link-immmediate-block
jump-to-link-immmediate-block
jump-and-link-add-immmediate-block
compare less than (signed)
compare greater than (signed)
compare less or equal (signed)
compare greater or equal (signed)
compare equal

compare not equal

compare less than (unsigned)
compare greater than (unsigned)
compare less or equal (unsigned)
compare greater or equal (unsigned)
conditional move

negated conditional move

copy register

logical not

signed negate

byte swap

count trailing zeros

count leading zeroes

count population

sign extend

Table 4.2.: Pseudo instructions
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4.5. Calling convention

4.5.1. calling convention — 16-bit

the 16-bit instruction packet, while intended to be used in conjunction with the larger op-
codes, is designed as a complete subset, so there is an ABI variant that targets a subset of
the instruction set architecture that only uses the 16-bit opcodes.

the register assignment for the 16-bit subset was chosen with this rationale:

* 2 blocks of 4 contiguous non-volatile callee-save and volatile caller-save registers.
* 3 special registers, 2 argument registers, 1 temporary register, and 3 save registers.
* 3 save registers to avoid excessive spilling around function calls.

* 1 temporary register to avoid spilling arguments to free a temporary.
the calling convention for the 16-bit subset is as follows:

* immediate base ib is set by call instructions and must point to a valid immediate
block on function entry. function symbols are exported with two labels; one in the
.text section, and one in the . const section. immediate base must be restored to the
entry value in the function epilogue before it can be restored by ret.

» argument registers a0 and al are used for the first two arguments, and the remaining
arguments are passed on the stack. return value is places in a0 and al, temporary
register t0 is a volatile register, and frame pointer (if enabled) uses s0. there are two
more non-volatile callee-save registers, s1 and s2.

the following table outlines the 16-bit register allocation showing register name alias, de-
scription, and non-volatile callee-save or volatile caller-save status.

name | alias | description save

ib immediate base callee
10 sp stack pointer callee
rl sO/fp | saved register O / frame pointer callee
12 sl saved register 1 callee
r3 s2 saved register 2 callee
r4 a0 argument register O caller
r5 al argument register 1 caller
16 t0 temporary register 0 caller
r7 ra return address / (pc,ib) link vector | caller

Table 4.3.: 16-bit register assignment
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A. Appendix

A.1. Opcode summary — 16-bit

15 13 12 10 9 7 6 2 1 0
operand opcode size

uimm 00000 00 break uimm9

simm 00001 00 jsimm9 x 2

simm 00010 00 bsimm9 x 2

simm 00011 00 ibjsimm9 x 64
fun uimm 00100 00 link.i64 f un3, ib64(uimmo6)
rc uimm 00101 00 movh.i64 rc,ib32(uimmé6)
rc uimm 00110 00 movw.i64 rc,ib64(uimmo6)
re simm 00111 00 movi.i64 rc,simm6
re simm 01000 00 addi.i64 rc,simm6
re uimm 01001 00 srli.i64 rc,uimm6
re uimm 01010 00 srai.i64 rc,uimmé6
re uimm 01011 00 slli.i64 rc,uimmo6
rc uimm 01100 00 addh.i64 rc,ib32(uimmé6)
rce uimm 01101 00 leapc.i64 rc,ib32(uimm6)(pc)
re uimm 01110 00 loadpc.i64 rc,ib32(uimm6)(pc)
re uimm 01111 00 storepc.i64 rc,ib32(uimme6)(pc)
re rb uimm 10000 00 load.i64 rc, (uimm3 x 8)(rb)
re rb uimm 10001 00 store.i64 rc, (uimm3 x 8)(rb)
re rb fun 10010 00 compare.i64 rc,rb, fun3
re rb fun 10011 00 logic.i64 rc,rb, fun3
re rb ra 10100 00 pin.i6é4 rc,rb,ra
re rb ra 10101 00 and.i64 rc,rb,ra
re rb ra 10110 00 or.i64 rc,rb,ra
re rb ra 10111 00 xor.i64 rc,rb,ra
re rb ra 11000 00 add.i64 rc,rb,ra
re rb ra 11001 00 srl.i64 rc,rb,ra
re rb ra 11010 00 sra.i64 rc,rb,ra
re rb ra 11011 00 sll.i64 rc,rb,ra
re rb ra 11100 00 sub.i64 rc,rb,ra
re rb ra 11101 00 mul.i64 rc,rb,ra
re rb ra 11110 00 divi6é4 rc,rb,ra

uimm 11111 00 illegal uimm9
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