
GLYPH-X
a super regular RISC architecture

January 22, 2026 – v0.6.0-current

Michael Clark
Independent Researcher

Maya glyphs in stucco on display at the Museo de Sitio in Palenque, Mexico.
Image courtesy of Wikipedia. Public domain.

to my mentors, whose guidance and wisdom made this work possible.

"Perfection is achieved,
not when there is nothing more to add,
but when there is nothing left to take away."

— Antoine de Saint-Exupéry

Contents
Preface v

1. Architecture 1
1.1. Introduction . 1

1.1.1. load-store . 2
1.1.2. registers . 2
1.1.3. memory . 2
1.1.4. instructions . 3
1.1.5. constants . 4

1.2. Program streams . 5
1.3. Core concepts . 6
1.4. Core parameters . 7

1.4.1. architectural parameters . 7
1.4.2. architectural profiles . 7

1.5. Instruction format . 8
1.5.1. instruction sizes . 8
1.5.2. instruction decoding . 8
1.5.3. instruction forms . 9

1.6. Register file . 11
1.6.1. template architectural profile . 11
1.6.2. scalar-min architectural profile . 12
1.6.3. scalar-max architectural profile . 13
1.6.4. vector-min architectural profile . 14
1.6.5. vector-max architectural profile . 15

1.7. Example pipeline . 16

2. System 17
2.1. User-level registers . 17

2.1.1. floating-point unit registers . 18
2.1.2. clock and frequency registers . 19
2.1.3. thread address registers . 19

2.2. System registers . 20
2.2.1. privileged trap registers . 21
2.2.2. privileged system registers . 24
2.2.3. privileged debug registers . 27

2.3. Capability extension . 29
2.3.1. capability control registers . 30

ii

2.3.2. capability permission registers . 30
2.3.3. capability role registers . 31
2.3.4. capability matrix registers . 32

2.4. Domain extension . 33
2.4.1. domain control registers . 34
2.4.2. domain routing registers . 35
2.4.3. domain context registers . 36

2.5. Machine extension . 37
2.5.1. machine control registers . 38
2.5.2. machine memory registers . 39

2.6. Environment extension . 40
2.6.1. environment control registers . 41

2.7. Address translation . 42
2.7.1. page table structure . 42
2.7.2. page table entries . 42
2.7.3. page table addresses . 43
2.7.4. page table translation . 43

3. Instructions 45
3.1. Instruction listing — 16-bit . 45

3.1.1. break . 45
3.1.2. j . 45
3.1.3. b . 45
3.1.4. ibj . 46
3.1.5. link . 46
3.1.6. movh . 47
3.1.7. movw . 47
3.1.8. movi . 47
3.1.9. addi . 47
3.1.10. srli . 48
3.1.11. srai . 48
3.1.12. slli . 48
3.1.13. addh . 48
3.1.14. leapc . 49
3.1.15. loadpc . 49
3.1.16. storepc . 49
3.1.17. load . 49
3.1.18. store . 50
3.1.19. compare . 50
3.1.20. logic . 51
3.1.21. pin . 51
3.1.22. and . 52
3.1.23. or . 52
3.1.24. xor . 52

iii

Contents

3.1.25. add . 52
3.1.26. srl . 53
3.1.27. sra . 53
3.1.28. sll . 53
3.1.29. sub . 53
3.1.30. mul . 54
3.1.31. div . 54
3.1.32. illegal . 54

4. Assembly 55
4.1. Introduction . 55
4.2. Concepts . 55

4.2.1. assembly . 55
4.2.2. object . 55
4.2.3. archive . 55
4.2.4. executable . 55
4.2.5. shared library . 56
4.2.6. section . 56
4.2.7. segment . 56
4.2.8. symbol . 56
4.2.9. relocation . 56
4.2.10. program linking . 56

4.3. Directives . 57
4.4. Pseudo-instructions . 58
4.5. Calling convention . 59

4.5.1. calling convention — 16-bit . 59

A. Appendix 60
A.1. Opcode summary — 16-bit . 60

References 61

iv

Preface
this document introduces a RISC architecture designed with simplicity as its dominating
principle, along with several features not yet present in mainstream RISC architectures:

• a compression technique for split instruction and constant streams.

• a variable-length instruction format designed for vectorized decoding.

• an efficient frontier between hardware synthesis and software translation.

• a modern approach to virtualization, memory management, and capabilities.

the document begins with a general introduction to RISC architectures, including principal
elements such as load-store operation, memory, registers, instructions, and constants. it then
presents an overview of the proposed architecture, followed by sections on program streams,
the variable-length instruction format, the instruction set, its assembly syntax, and the pro-
gramming language calling convention.

this document does not simply present an architecture reimplementing existing ideas; rather,
it introduces a novel architecture featuring an instruction coding scheme optimized for effi-
cient parallel decoding in hardware or software, combined with contemporary practices in
instruction semantics, including the use of single-bit predicates for compare, divide, branch,
plus arithmetic instructions with carry, to achieve an optimal mapping to vectors.

in addition to the core instruction set, the architecture also defines extensions for capabilities,
virtual domains, software-defined memory management and environment. the capability ex-
tension adds fine-grained page-based permissions and role based access control. the domain
extension adds virtualization for trap routing, page translation, and context switching. the
machine extension provides for custom address translation schemes. finally, the environ-
ment extension adds controls for power and reset.

this work is intended for computer architects, systems programmers, students of computing
machinery, and anyone interested in the evolution of RISC design. by the end of the doc-
ument, readers should be able to reason about computer programs at the instruction level
and understand the logic behind the architecture’s design choices—with enough detail to
implement the architecture in hardware or software.

v

1. Architecture

1.1. Introduction
this section gives a brief introduction to RISC architectures.

A RISC1 machine is a type of general-purpose computer with the characteristic that it has a
reduced set of instructions in contrast to a CISC2 machine. A RISC machine is Turing com-
plete meaning it can perform any computation that a Turing machine can, given enough time
and memory. a Turing machine [12] is a theoretical model of computation.

a RISC machine has a set of instructions which comprise basic operations such as: load-from-
memory, store-to-memory, add, subtract, compare, plus conditional branch and unconditional
branch instructions et cetera; which one can imagine as a list of instructions on a paper tape.
each instruction has an opcode, which is a unique binary pattern that identifies the operation,
plus several operands, which are arguments to the instruction.

register-0 = load-from-memory at tape-address-0
register-1 = load-from-memory at tape-address-1
register-2 = add register-0 and register-1

store-to-memory register-2 at tape-address-2

some instructions have operands that point to values inside of registers in a register-file which
is like a close filing cabinet containing cards with numbers on them, and some of these num-
bers are addresses that point to values in main-memory which is like a larger but slower filing
cabinet. some of these values are immediate values which are small numbers listed inside of
the instructions on the paper tape.

the paper tape is just a way conceptualize a list of instructions stored in main-memory. there
is a special register called PC short for program counter, which points to the current position
on the tape. after each instruction executes the tape is advanced to the next instruction and
the program counter is incremented, until it encounters a branch instruction which causes it
to move forwards or backwards to a different position on the tape. branch instructions can
be conditional or unconditional. conditional branches are selectively executed based on the
results of a comparison instruction.

1Reduced Instruction Set Computer
2Complex Instruction Set Computer

1

1. Architecture

1.1.1. load-store
a load-store architecture [4] is a way to characterize RISC architectures where most instruc-
tions have simple operands that point to values held in registers, plus load and store instruc-
tions to retrieve and commit values to main memory. a load-store architecture alleviates the
need to add complex addressing modes, plus intput-output to peripherals and secondary
storage use MMIO3 to avoid needing special Input/Output instructions.

1.1.2. registers
registers are temporary storage used to fill input and output operands for the ALU4 before and
after execution of instructions. registers are organized as a word-addressable store where
each register number refers to X LEN ∈ {64, 128} bits of data. XLEN is a parameter that
specifiess the width of registers in bits.

register 3
register 2
register 1
register 0

XLEN 0

Figure 1.1.: organization of register storage.

1.1.3. memory
main memory is primary storage which in modern computers is most likely DRAM5. main
memory is organized as a byte-addressable store where each address refers to a byte which
is 8-bits of data. ALEN is a parameter that specifies the width of addresses in bits.

address 24
address 16
address 8
address 0

ALEN 0 byte-7 byte-0

Figure 1.2.: organization of main-memory storage.

3MMIO - Memory-mapped I/O.
4ALU – Arithmetic logic unit.
5DRAM – Dynamic random-access memory.

2

1. Architecture

1.1.4. instructions
instruction memory is a memory region dedicated to program instructions. it is organized as
a word-addressable store, similar to main memory, but is read-only and reserved exclusively
for instructions. this configuration is typically referred to as a Harvard architecture [1], in
contrast to a Von Neumann architecture [9], which uses a shared memory region for both
program instructions and data.

instruction words contain packets of 16-bits which are composed of size, opcode, and operand
fields. instruction packets can be appended together to form larger instruction words with
larger opcode and operand fields. section 1.5 provides details on the instruction template
and instruction forms.

1 06 215 7
sz[1:0]opcode[4:0]operand[8:0]

Figure 1.3.: 16-bit instruction containing one packet.

1 06 215 7
sz[1:0]opcode[4:0]operand[8:0]

sz[3:2]opcode[9:5]operand[17:9]

Figure 1.4.: 32-bit instruction containing two packets.

instruction words are packed together into instruction blocks containing instruction size in-
formation that is used to fuse them together to compose variable-length instructions [8].
instruction words can begin on any 16-bit aligned address. instruction memory is addressed
with displacements from the program counter called pc-relative addresses.

instruction 4–7
instruction 0–3

pcrel(3) pcrel(0)

Figure 1.5.: organization of instruction-memory with 16-bit instructions.

instruction 4–7
instruction 0–3

pcrel(3) pcrel(0)

Figure 1.6.: organization of instruction-memory with 16-bit and 32-bit instructions.

3

1. Architecture

1.1.5. constants
constant memory [11] is a memory region dedicated to constants. it is organized as a word-
addressable store like main-memory, but is read-only and restricted to constants. instructions
can refer to constants using ib-relative addresses inside instruction operands. section 1.2 pro-
vides more details on the split instruction and constant streams.

constant memory is addressed with displacements from the immediate base register called
ib-relative addresses which are stored inside instruction operand slots, are sized, scaled and
aligned addresses computed relative to the immediate base register, which is like a program
counter for constants. these diagrams show i b8(n) through i b64(n) ib-relative addresses
for access to 8-bit through to 64-bit constants respectively: note: ib-relative addresses alias a
single constant storage space containing all types.

constant 8–15
constant 0–7

ib8(7) ib8(0)

Figure 1.7.: organization of ib8 constant-memory storage.

constant 4–7
constant 0–3

ib16(3) ib16(0)

Figure 1.8.: organization of ib16 constant-memory storage.

constant 2–3
constant 0–1

ib32(1) ib32(0)

Figure 1.9.: organization of ib32 constant-memory storage.

constant 1
constant 0

ib64(0)

Figure 1.10.: organization of ib64 constant-memory storage.

4

1. Architecture

1.2. Program streams
glyph seperates the stored programs into two streams, one with instructions and one with
constants [11]. the instruction stream is addressed with the program counter (pc) and the
constant stream is addressed with the immediate base (ib) register. this could be referred to
as split program stream Harvard architecture.

instruction stream (pc-relative)

instruction packet

pc . . .15 7 6 2 1 0

operands code size

constant stream (ib-relative)

immediate block

. . .

ib8 0 1 2 3 4 5 6 7

ib16 0 1 2 3

ib32 0 1

ib64 0

ib-relative constants

Figure 1.11.: program counter and immediate base register.

instruction blocks are aligned memory blocks addressed by the program counter. instruction
memory is addressed with pc-relative addresses in instruction immediate values or indirectly
with constants accessed using ib-relative addresses stored inside instruction operand slots.

immediate blocks are aligned memory blocks addressed by the immediate base register. con-
stant memory is addressed with ib-relative addresses stored inside instruction operand slots,
which are sized, scaled, and aligned relative to the immediate base register.

the constant stream branches independently using the immediate-block-jump instruction to
update the immediate base register, or together with the program counter in procedure call
and return instructions that branch instruction and constants at the same time; jump-and-
link-immediate-block and jump-to-link-immediate-block add and subtract address vectors to
(pc,ib). the pack-indirect instruction allows absolute (pc,ib) addresses to be packed into an
address vector for indirect calls.

the instruction forms use bonded operand slots for immediate operands and operand bits do
not overlap opcode bits. the use of immediate blocks means large immediate constants can
all be accessed using short references encoded inside of operand slots for instructions that
use an immediate block relative addressing mode.

5

1. Architecture

1.3. Core concepts
glyph is a super regular RISC architecture that encodes constants in a secondary stream ac-
cessed via an immediate base register that points at immediate blocks containing constants
accessed via a constant address mode. the immediate base register branches like the program
counter, and procedure calls and returns set and restore (pc,ib) together.

glyph uses relative address vectors in its link register which is different to typical RISC archi-
tectures. glyph does this so that the branch instructions can fit (pc,ib) into the a single link
register for compatibility with traditional RISC architectures. glyph achieves this by packing
two relative (pc,ib) displacements into a relative address vector6.

immediate blocks can be switched using the immediate block branch instruction. immedi-
ate blocks, unlike typical RISC architectures, mean that most relocations are word sized like
CISC architectures, and can use C-style structure packing and alignment rules.

this list outlines some differentiating elements of the super regular RISC architecture:

• variable length instruction format supporting 16, 32, and 64-bit instructions.

• 1-bit predicate for compare, branch, add with carry, and subtract with borrow.

• 16-bit compressed instruction packets that can access 8 registers.

• (pc,ib) is a program counter and immediate base register address vector.

• link register contains a packed relative (pc,ib) address vector to function entry.

• ibj — immediate-block-jump adds a relative address to the immediate base register.

• movw — move-word-immediate-block uses a displacement to access a constant.

• jalib — jump-and-link-immediate-block or link-function-call copies the address vector
into the link register and adds constants to (pc,ib). it is used to branch the program
counter and immediate base register at the same time for calling procedures.

• jtlib— jump-to-link-immediate-block or link-function-return subtracts link vector from
and adds constants to (pc,ib). it is used to branch the program counter and the imme-
diate base register at the same time for returning from called procedures.

• pin — pack-indirect packs two absolute addresses as relative address vector from
(pc,ib) and is used for calling absolute addresses such as virtual functions.

the pin and link instructions form a modular arithmetic ring of relative address vectors,
due to their use of relative addresses. relative address vectors can be encrypted, decrypted,
and authenticated to form a verifiable chain of addresses for control flow integrity.

6the architecture defines two parameters: ALEN and XLEN, which respectively to refer to width of addresses and
width of general purpose registers in bits. when X LEN ≥ ALEN × 2 it is possible to pack absolute addresses
instead of relative addresses, as would be the case where ALEN=64 and XLEN=128.

6

1. Architecture

1.4. Core parameters
glyph has serveral architectural parameters that define the dimensions of an instance of the
architecture to allow the archiecture to be instantiated in several different configurations.
these configurations are grouped into architectural profiles.

1.4.1. architectural parameters
glyph defines a unified floating-point and integer scalar register file with 8 or 64 registers
and an optional unified floating-point and integer vector register file with 64 registers.

• 16-bit instruction packet can access 8 registers with up to 3 operands.

• 32-bit instruction packet can access 64 registers with up to 3 operands.

• 64-bit instruction packet can access 64 registers with up to 6 operands.

glyph architectural parameters are as follows:

Parameter Value Description
SREG 8, 64 number of scalar registers
VREG –, 64 number of vector registers
ILEN 16, 32, 64 width of largest instruction in bits
ALEN 64 width of arithmetic on scalars in bits
XLEN 64, 128 width of scalar registers in bits
VLEN 512, 4096 width of vector registers in bits
GLEN 128 width of vector lane group in bits

Table 1.1.: architectural parameters

1.4.2. architectural profiles
glyph architectural parameters are linked to the dimensions of the register slots in the vari-
able length instruction packets. the 16-bit packet can be used in a freestanding microcon-
troller profile. the 32-bit packet contains scalar and packed-SIMD7 instructions on scalar
registers. the 64-bit packet contains packed-SIMD instruction on vector registers.

profile SREG VREG ILEN ALEN XLEN VLEN GLEN
scalar-min 8 - 16 64 64 - -
scalar-max 64 - 32 64 128 - -
vector-min 64 64 64 64 128 512 128
vector-max 64 64 64 64 128 4096 128

Table 1.2.: architectural profiles

7SIMD - Single Instruction Multiple Data

7

1. Architecture

1.5. Instruction format
instructions use a variable length format [8] with a 16-bit instruction packet that supports
16, 32, 64, and 128-bit instruction words. the instruction packet uses a super regular scheme,
whereby successive instruction packets extend the fields in the previous instruction packet [7].
instruction words can begin on any 16-bit aligned address.

1.5.1. instruction sizes
the variable length instruction format has a 2-bit size field inspired by LEB128 [5] in a fixed
position in every instruction packet, to reduce the complexity of size-decoding for variable
length instructions8. this table shows the size fields for the different instruction sizes:

Instruction size Size vector
16-bit {00}
32-bit {01,11}
64-bit {10,11,11,11}

Table 1.3.: variable-length instruction size fields

1.5.2. instruction decoding
the instruction size encoding and field extension scheme has been designed to minimize
complexity for parallel decoding in hardware and software. the following table shows the
instruction width combinations for various width parallel instruction decoders.

Packets Bits Bytes ncombos log2(n)

1-wide 16-bit 2 1 0
2-wide 32-bit 4 16 4
4-wide 64-bit 8 58 5.86
8-wide 128-bit 16 574 9.16
16-wide 256-bit 32 51904 15.66

Table 1.4.: instruction decode combinations

8instructions are considered well-formed if the size field of subsequent packets has the value 11.

8

1. Architecture

1.5.3. instruction forms
the variable length instruction format has a single base format where fields in the template
instruction form are extended by successive instruction packets.

the instructions forms are super regular in that operand and opcode bits do not overlap and
the number and complexity of the formats is reduced so that vectorized instruction decoding
is simple in both hardware and software. the scheme is designed so that 1-bit of coding space
in the larger packet can be used to extend register sizes.

instruction templates

this section details the layout of the variable sized instructions:

1 06 215 7
sz[1:0]opcode[4:0]operand[8:0]

op16
16-bit instruction packet

1 06 215 7
sz[1:0]opcode[4:0]operand[8:0]

sz[3:2]opcode[9:5]operand[17:9]

op32
32-bit instruction packet

1 06 215 7
sz[1:0]opcode[4:0]operand[8:0]

sz[3:2]opcode[9:5]operand[17:9]

sz[5:4]opcode[14:10]operand[26:18]

sz[7:6]opcode[19:15]operand[35:27]

op64
64-bit instruction packet

16-bit instruction forms

this section details the layout of the 16-bit instruction forms:

1 06 2715
00opcode[4:0]imm[5:0]

op16i
16-bit large immediate

1 06 212 715 13
00opcode[4:0]imm[5:0]rc[2:0]

op16ri
16-bit one operand with immediate

1 06 29 712 1015 13
00opcode[4:0]imm[2:0]r b[2:0]rc[2:0]

op16rri
16-bit two operand with immediate

1 06 29 712 1015 13
00opcode[4:0]ra[2:0]r b[2:0]rc[2:0]

op16r3
16-bit three operand

9

1. Architecture

32-bit instruction forms

this section details the layout of the 32-bit instruction forms:

1 06 215 7
01opcode[4:0]imm[8:0]

11opcode[9:5]imm[17:9]

op32i
32-bit large immediate

1 06 212 715 13
01opcode[4:0]imm[5:0]rc[2:0]

11opcode[9:5]imm[11:6]rc[5:3]

op32ri
32-bit one operand with immediate

1 06 29 712 1015 13
01opcode[4:0]imm[2:0]r b[2:0]rc[2:0]

11opcode[9:5]imm[5:3]r b[5:3]rc[5:3]

op32rri
32-bit two operand with immediate

1 06 29 712 1015 13
01opcode[4:0]ra[2:0]r b[2:0]rc[2:0]

11opcode[9:5]ra[5:3]r b[5:3]rc[5:3]

op32r3
32-bit three operand

64-bit instruction forms

this section details the layout of the 64-bit instruction forms:

1 06 2715
10opcode[4:0]imm[5:0]

11opcode[9:5]imm[11:6]

11opcode[14:10]imm[17:12]

11opcode[19:15]imm[23:18]

op64i
64-bit large immediate

1 06 212 715 13
10opcode[4:0]imm[5:0]rc[2:0]

11opcode[9:5]imm[11:6]rc[5:3]

11opcode[14:10]imm[17:12]r f[8:6]

11opcode[19:15]imm[23:18]r f[11:9]

op64rri
64-bit two operand with immediate

1 06 29 712 1015 13
10opcode[4:0]imm[2:0]r b[2:0]rc[2:0]

11opcode[9:5]imm[5:3]r b[5:3]rc[5:3]

11opcode[14:10]imm[8:6]re[8:6]r f[8:6]

11opcode[19:15]imm[11:9]re[11:9]r f[11:9]

op64r4i
64-bit four operand with immediate

1 06 29 712 1015 13
10opcode[4:0]ra[2:0]r b[2:0]rc[2:0]

11opcode[9:5]ra[5:3]r b[5:3]rc[5:3]

11opcode[14:10]rd[8:6]re[8:6]r f[8:6]

11opcode[19:15]rd[11:9]re[11:9]r f[11:9]

op64r6
64-bit six operand

10

1. Architecture

1.6. Register file
glyph has register state comprised of a predicate register, program counter, and immediate
base registers, a unified floating-point and integer scalar register file, and an optional unified
floating-point and integer vector register file, each with an extensible number of registers.

1.6.1. template architectural profile
the register state accessible by the template architectural profile is comprised of:

• 1-bit predicate register (flag).

• ALEN-bit program counter register (aligned to 2 bytes).

• ALEN-bit immediate base register (aligned to 64 bytes).

• SREG × XLEN-bit scalar registers (r0 — rN).

• VREG × VLEN-bit vector registers (v0 — vN).

the following diagram shows the template architectural profile register state:

r0
r1
r2
r3
r4
r5

v0
v1
v2
v3
v4
v5

...

...

rN

vN

ALEN 0

XLEN 0

VLEN 0

ib
pc

flag predicate

control
registers

scalar
registers

vector
registers

Figure 1.12.: template architectural profile register state.

11

1. Architecture

1.6.2. scalar-min architectural profile
the register state accessible by the scalar-min architectural profile is comprised of:

• 1-bit predicate register (flag).

• 64-bit program counter register (aligned to 2 bytes).

• 64-bit immediate base register (aligned to 64 bytes).

• 8 × 64-bit scalar registers (r0 — r7).

the following diagram shows the scalar-min architectural profile register state:

r0
r1
r2
r3
r4
r5
r6
r7

64 0

64 0

ib
pc

flag predicate

control
registers

scalar
registers

Figure 1.13.: scalar-min architectural profile register state.

when X LEN < ALEN × 2 it is not possible to pack absolute addresses in the link register,
so the PIN and LINK instructions save relative addresses in the link register. this increases
latency in branch address calculation compared to absolute addresses.

12

1. Architecture

1.6.3. scalar-max architectural profile
the register state accessible by the scalar-max architectural profile is comprised of:

• 1-bit predicate register (flag).

• 64-bit program counter register (aligned to 2 bytes).

• 64-bit immediate base register (aligned to 64 bytes).

• 64 × 128-bit scalar registers (r0 — r63).

the following diagram shows the scalar-max architectural profile register state:

r0
r1
r2
r3
r4
r5

r63

64 0

128 0

...

ib
pc

flag predicate

control
registers

scalar
registers

Figure 1.14.: scalar-max architectural profile register state.

when X LEN ≥ ALEN × 2 it is possible to pack absolute addresses in the link register, so the
PIN and LINK instructions save abosulte addresses in the link register instead. this reduces
latency in branch address calculation compared to relative addresses.

13

1. Architecture

1.6.4. vector-min architectural profile
the register state accessible by the vector-min architectural profile is comprised of:

• 1-bit predicate register (flag).

• 64-bit program counter register (aligned to 2 bytes).

• 64-bit immediate base register (aligned to 64 bytes).

• 64 × 128-bit scalar registers (r0 — r63).

• 64 × 512-bit vector registers (v0 — v63).

the following diagram shows the vector-min architectural profile register state:

r0
r1
r2
r3
r4
r5

v0
v1
v2
v3
v4
v5

...

...

r63

v63

64 0

128 0

512 0

ib
pc

flag predicate

control
registers

scalar
registers

vector
registers

Figure 1.15.: vector-min architectural profile register state.

14

1. Architecture

1.6.5. vector-max architectural profile
the register state accessible by the vector-max architectural profile is comprised of:

• 1-bit predicate register (flag).

• 64-bit program counter register (aligned to 2 bytes).

• 64-bit immediate base register (aligned to 64 bytes).

• 64 × 128-bit scalar registers (r0 — r63).

• 64 × 4096-bit vector registers (v0 — v63).

the following diagram shows the vector-max architectural profile register state:

r0
r1
r2
r3
r4
r5

v0
v1
v2
v3
v4
v5

...

...

r63

v63

64 0

128 0

4096 0

ib
pc

flag predicate

control
registers

scalar
registers

vector
registers

Figure 1.16.: vector-max architectural profile register state.

15

1. Architecture

1.7. Example pipeline
an illustrative micro-architecture is proposed based on the classic 5-stage RISC micro-architecture [10]
with the addition of an operand fetch stage and a constant memory port. this revised 6-stage
micro-architecture is composed of the following pipeline stages:

• IF — instruction fetch: reads instructions from memory into a fetch buffer.

• ID — instruction decode: decodes instruction length, opcode, and operands.

• OF — operand fetch: reads operands from register file and constant memory.

• EX — execute: performs logical operations or arithmetic on the operands.

• MA — memory access: loads data from or stores data to memory.

• WB — writeback: writes results back to the register file.

a simplified micro-architecture using those pipeline stages might look like this: this example
omits hazard detection and forwarding logic for the sake of simplicity.

IF – instruction fetch

ID – instruction decode

OF – operand fetch

EX – execute

MA – memory access

WB – writeback

instruction memory – IM

constant memory – KM

data memory – DM

register file – RF

Figure 1.17.: sample 6-stage micro-architecture with support for constant memory.

16

2. System

2.1. User-level registers
the architecture provides several user-level status and control registers for floating-point sta-
tus and control, clock time, clock frequency, thread address and domain.

user-level status and control registers can be read and written using the sysread, syswrite,
sysset, and sysclear instructions. user-level status and control registers are available in
contexts where their associated bit is enabled in scontrol.

user-level registers

the following table lists the user-level registers:

no. name description
floating-point unit registers
0x00 fpstatus floating-point status
0x01 fpcontrol floating-point control
clock and frequency registers
0x02 ctime clock time
0x03 cfreq clock frequency
thread address registers
0x04 addr user thread address
0x05 domain user thread domain

Table 2.1.: user-level registers

17

2. System

2.1.1. floating-point unit registers
the section describes the user-level floating-point unit registers.

floating-point status (fpstatus)

fpstatus is a read-only register containing status information for floating-point operations.
the Z, O, U, X, and I fields contain accrued floating-point exceptions. this register is vis-
ible if scontrol.F is enabled.

0

I
1

X
2

U
3

O
4

Z

no. name description
1 << 0 I invalid operation
1 << 1 X inexact result
1 << 2 U numeric underflow
1 << 3 O numeric overflow
1 << 4 Z divide by zero

Table 2.2.: floating-point status flags

floating-point control (fpcontrol)

fpcontrol is a read-write register containing control information for floating-point oper-
ations. the RM field contains the current floating-point rounding mode. the Z field enables
flush-to-zero and denormals-are-zero. the N field enables not-strict-ieee754, allowing fused-
multiply-add and other optimizations that may affect precision. this register is visible if
scontrol.F is enabled.

0

Z
1

N
23

RM

no. name description
1 << 0 Z flush-to-zero and denormals-are-zero
1 << 1 N not-strict-ieee754

Table 2.3.: floating-point control flags

no. name description
0 RN round to nearest (even)
1 RD round down (towards −∞)
2 RU round up (towards +∞)
3 RZ round towards zero (truncate)

Table 2.4.: floating-point control round mode field

18

2. System

2.1.2. clock and frequency registers
the section describes the user-level clock and frequency registers.

clock time (ctime)

ctime is a read-only register containing the wall-clock tick counter since power on in clock
tick units denoted by cfreq. this register is visible if scontrol.T is enabled.

063

clock time

clock frequency (cfreq)

cfreq is a read-only register containing the wall-clock tick interval in picoseconds; 1012

f
where f is the frequency in Hertz (Hz). this register is visible if scontrol.T is enabled.

063

clock frequency

2.1.3. thread address registers
the section describes the user-level thread address registers.

thread address (addr)

addr is a read-only register containing an alias of the unique system-wide topological ad-
dress for this thread from saddr. this register is visible if scontrol.D is enabled.

062

thread address
63

0

thread domain (domain)

domain is a read-only register containing an alias of the system-wide domain address for
this thread from sdomain. this register is visible if scontrol.D is enabled.

062

thread domain
63

1

19

2. System

2.2. System registers
the architecture provides several privileged status and control registers for trap handling,
system configuration, address translation, timers, interrupts, and debugging.

privileged system-level status and control registers can be read and written using the sysread,
syswrite, sysset, and sysclear instructions. privileged system registers are accessible
from executable pages with system or physical address spaces.

privileged registers

the following table lists the privileged trap, system, debug and machine registers:

no. name description
privileged trap registers
0x10 tstatus trap status
0x11 tcontrol trap control
0x12 tscratch trap scratch
0x13 tvalue trap value
0x14 tcause trap cause
0x15 tack trap acknowledge
0x16 tepc trap exception program counter
0x17 teib trap exception immediate base
0x18 thpc trap handler program counter
0x19 thib trap handler immediate base
privileged system registers
0x21 scontrol system control
0x22 sfeature system feature
0x23 sversion system version
0x24 sptr system page table root
0x25 saddr system thread address
0x26 sdomain system thread domain
0x27 starget system target address
0x28 smessage system target message
0x29 stimer system deadline timer
0x2a sie system interrupt enable
0x2b sip system interrupt pending
privileged debug registers
0x30 dstatus debug status
0x32 dcycle debug cycle counter
0x33 dinst debug instruction counter
0x34 dstop debug stop instruction
0x35 dfetch debug monitor fetch address
0x36 dread debug monitor read address
0x37 dwrite debug monitor write address

Table 2.5.: privileged registers

20

2. System

2.2.1. privileged trap registers
the section describes the privileged trap registers.

trap status (tstatus)

tstatus is a read-only register containing trap status. the T field indicates whether a timer
interrupt is pending. the V field indicates whether a virtual interrupt is pending.

0

T
1

V

no. name description
1 << 0 T timer interrupt pending
1 << 1 V virtual interrupt pending

Table 2.6.: trap status fields

trap control (tcontrol)

tcontrol is a read-write register containing control bits. the I field is read-write and con-
trols whether system interrupts are enabled.

0

I

no. name description
1 << 0 I system interrupt enable

Table 2.7.: trap control fields

trap scratch (tscratch)

tscratch is a read-write save register for use during trap handling.

063

scratch value

21

2. System

trap value (tvalue)

tvalue is a read-only register containing the identity of the trap and may contain:

• the faulting instruction word for break and illegal instruction exceptions.

• the faulting address for misaligned, access and page faults.

• the message value for virtual interrupts.

• the system clock time for timer interrupts.

063

trap value

trap cause (tcause)

tcause is a read-only register that contains the cause of the current trap.

05

cause

no. name description
system exceptions
1 break-instruction break instruction exception
2 illegal-instruction illegal instruction exception
3 debug-monitor debug monitor exception
4 misaligned-fetch fetch misaligned
5 misaligned-load load misaligned
6 misaligned-store store misaligned
7 access-fault-fetch fetch access fault
8 access-fault-load load access fault
9 access-fault-store store access fault
10 page-fault-fetch fetch page fault
11 page-fault-load load page fault
12 page-fault-store store page fault
13 capability-fault capability fault
14 domain-fault domain fault
15 machine-fault machine fault
system interrupts
30 timer-interrupt timer interrupt
31 virtual-interrupt virtual interrupt
32...63 interrupt-n interrupt pins 0 – 31

Table 2.8.: trap causes

22

2. System

trap acknowledge (tack)

tack is a write-only register where the trap cause is written to acknowledge the trap so that
interrupts are not delivered while state is being saved, and for double-faults to be detected.

05

cause

trap exception program counter (tepc)

tepc is a read-only register which contains the program counter address before the trap.

063

program counter

trap exception immedidate base (teib)

teib is a read-only register which contains the immediate base address before the trap.

063

immedidate base

trap handler program counter (thpc)

thpc is a read-write register containing the address of the system trap handler routine.

063

program counter

trap handler immediate base (thib)

thib is a read-write register containing the address of the system trap handler constants.

063

immediate base

23

2. System

2.2.2. privileged system registers
the section describes the privileged system registers.

system control (scontrol)

scontrol is a read-write register containing system control bits.

0

F
1

T
2

D
3

A
4

E

no. name description
1 << 0 F floating-point unit enabled
1 << 1 T user clock and frequency enabled
1 << 2 D user address and domain enabled
1 << 3 A user address space access disable enabled
1 << 4 E user address space execute disable enabled

Table 2.9.: system control fields

system feature (sfeature)

sfeature is a read-only register containing system feature bits.

0

F
1

T
2

D
3

A
4

E

no. name description
1 << 0 F floating-point unit feature
1 << 1 T user clock and frequency feature
1 << 2 D user address and domain feature
1 << 3 A user address space access disable feature
1 << 4 E user address space execute disable feature

Table 2.10.: system feature fields

24

2. System

system version (sversion)

sversion is a read-only register containing a specification version number described by its
major, minor, and patch fields. the allowable values are specified in the following table.

07

patch
815

minor
1623

major

major minor patch description
0 6 0 pre-release current

Table 2.11.: system version values

system page table root (sptr)

sptr is a read-write register containing the page table root physical address for address
translation on this thread. the ASID field contains the address space identifier for this thread.

011

ASID
1247

physical page number
63 48

sign extended

system thread address (saddr)

saddr is a read-only register containing the unique system-wide topological address for this
thread. the system-wide topological address is used as a target for inter-thread virtual inter-
rupts. this address is uniquely assigned during system initialization.

062

thread address
63

0

system thread domain (sdomain)

sdomain is a read-only register containing the system-wide domain address for this thread.
the system-wide domain address is used as a target for inter-thread virtual interrupts. this
address can alias. this address is assigned during context switching.

062

thread domain
63

1

25

2. System

system target address (starget)

starget is a read-write register containing the system-wide target address of a thread to
send a virtual interrupt. all-zeros is the boot service processor. all-ones is the broadcast ad-
dress. zero in the A field is a topological address. one in the A field is a domain address.

062

target address
63

A

system target message (smessage)

smessage is a write-only register that causes an edge-triggered virtual interrupt to be queued
to the thread set in starget. virtual interrupts are marked pending in the V field of the
tstatus register for the target thread.

063

message value

system deadline timer (stimer)

stimer is a read-write register containing the deadline timer for this thread. when the sys-
tem clock reaches the value in the register, a timer interrupt is triggered. timer interrupts are
marked pending in the T field of the tstatus register.

063

clock time

system interrupt enable (sie)

sie is a read-write register that contains interrupt enable flags for 32 wired interrupt pins.

031

interrupt enable 0-31

system interrupt pending (sip)

sip is a read-only register that contains interrupt pending flags for 32 wired interrupt pins.

031

interrupt pending 0-31

26

2. System

2.2.3. privileged debug registers
the section describes the privileged debug registers.

debug status (dstatus)

dstatus is a read-only register containing status bits for debug monitor execeptions.
0

S
1

F
2

R
3

W

no. name description
1 << 0 S stopping instruction
1 << 1 F fetch monitor address
1 << 2 R load monitor address
1 << 3 W store monitor address

Table 2.12.: debug status fields

debug cycle counter (dcycle)

dcycle is a read-only register containing the number of cycles retired since power on.

063

cycle counter

debug instruction counter (dinst)

dinst is a read-only register containing the number of instructions retired since power on.

063

instruction counter

debug stop instruction (dstop)

dstop is a read-write register containing an instruction number to halt execution on and
raise a debug monitor exception.

063

stopping instruction

27

2. System

debug monitor fetch address (dfetch)

dfetch is a read-write register containing a memory fetch address to monitor for and halt
execution on and raise a debug monitor exception for a matching memory fetch address.

063

fetch address

debug monitor read address (dread)

dread is a read-write register containing the memory load address to monitor for and halt
execution on and raise a debug monitor exception for a matching memory load address.

063

read address

debug monitor write address (dwrite)

dwrite is a read-write register containing the memory store address to monitor for and halt
execution on and raise a debug monitor exception for a matching memory store address.

063

write address

28

2. System

2.3. Capability extension
the architecture provides an optional capabilities extension that provides a capability check
for permissions and capabilities enabled by page table colors in page table entries. color
permissions mask pask page table permissions based on page table color. color capabilities
restrict access to system, domain, capability and machine registers based on page table color.

the following tables list the privileged capability system parameters:

name description
ncol the number of architectural colors

Table 2.13.: capability parameters

capability registers

the following tables list the privileged capability system registers:

no. name description depends
capability control registers
0x41 ccontrol capability control
capability permission registers
0x43 colorread color read permissions
0x44 colorwrite color write permissions
0x45 colorexec color exec permissions
capability role registers
0x46 colorsys color system role
0x47 colordom color domain role domain
0x48 colorcap color capability role
0x49 colormac color machine role machine
capability matrix registers
0x100...0x10f colormatread[n] color matrix read permissions
0x200...0x20f colormatwrite[n] color matrix write permissions
0x300...0x30f colormatexec[n] color matrix exec permissions

Table 2.14.: capability registers

29

2. System

2.3.1. capability control registers
this section describes the capability control registers which enable the capability extension.

capability control (ccontrol)

ccontrol is a read-write register containing capability control bits.

0

C

no. name description
1 << 0 C capability check enable

Table 2.15.: color control fields

2.3.2. capability permission registers
this section describes the capability permission registers which define page table color per-
mission masks for page table entries. when ccontrol.C is set, the capability permission
registers are combined with page table permissions to limit maximum read, write, or execute
permission based on page table color.

color read permission (colorread)

colorread is a read-write register containing an array of ncol bits containing read permis-
sions for color-x, used to check loads from pages with a matching page table color.

0ncol

read perms

color write permission (colorwrite)

colorwrite is a read-write register containing an array of ncol bits containing write per-
missions for color-x, used to check stores to pages with a matching page table color.

0ncol

write perms

color exec permission (colorexec)

colorexec is a read-write register containing an array of ncol bits containing execute per-
missions for color-x, used to check execution in pages with a matching page table color.

0ncol

exec perms

30

2. System

2.3.3. capability role registers
this section describes the capability role registers. the capability role registers describe access
to privileged system registers and instructions based on page table color. when ccontrol.C
is set, privileged system registers and instructions and will cause capability traps for ille-
gal accesses. system registers and instructions are restricted based on the following roles:
system, domain, capability and machine.

color system role (colorsys)

colorsys is a read-write register containing an array of ncol bits containing system role
for color-x, used to check access to privileged trap registers, privileged system registers and
privileged debug registers from executable pages with a matching page table color.

0ncol

system role

color domain role (colordom)

colordom is a read-write register containing an array of ncol bits containing domain role
for color-x that are used to check access to privileged domain registers from executable pages
with a matching page table color.

0ncol

domain role

color capability role (colorcap)

colorcap is a read-write register containing an array of ncol bits containing capability role
for color-x that are used to check access to privileged capability registers from executable
pages with a matching page table color.

0ncol

capability role

color machine role (colormac)

colormac is a read-write register containing an array of ncol bits containing machine role
for color-x that are used to check access to privileged machine registers from executable
pages with a matching page table color.

0ncol

machine role

31

2. System

2.3.4. capability matrix registers
this section describes the color matrix registers. the capability matrix registers are permission
registers that protect access to memory based on a combination of source and destination
page table color and read, write, or execute permissions. when ccontrol.C is set, memory
accesses and branches to memory addresses in pages with matching source and destination
page table colors, and wider permissions, will cause capability traps.

color matrix read permissions (colormatread[ncol])

colormatread[ncol] are ncol read-write registers containing an array of ncol bits with read
permissions, used to check loads from executable pages with a matching register page table
color to memory addresses in memory pages with a matching page table color index.

0ncol

read perms

color matrix write permissions (colormatwrite[ncol])

colormatwrite[ncol] are ncol read-write registers containing an array of ncol bits with
write permissions, used to check stores from executable pages with a matching register page
table color to memory addresses in memory pages with a matching page table color index.

0ncol

write perms

color matrix exec permissions (colormatexec[ncol])

colormatexec[ncol] are ncol read-write registers containing an array of ncol bits with exec
permissions, used to check branches from executable pages with a matching register page
table color to branch addresses in executable pages with a matching page table color index.

0ncol

exec perms

32

2. System

2.4. Domain extension
the architecture provides an optional domain [3] extension for virtual machines. the exten-
sion adds registers for virtual domain addresses, trap routing, page translation, and context
switching for system traps, domain traps, capability traps and machine traps.

the following tables list the privileged domain system parameters:

name description
ndom the number of architectural domains

Table 2.16.: domain parameters

domain registers

the following tables list the privileged domain system registers:

no. name description depends
domain control registers
0x51 domcontrol domain control
0x53 domlast domain number last
0x54 domcurr domain number current
0x55 domnext domain number next
domain routing registers
0x500...0x50f dommatrix[n] domain matrix
0x600...0x60f domsys[n] domain system default domain
0x700...0x70f domdom[n] domain domain default domain
0x800...0x80f domcap[n] domain capability default domain capability
0x900...0x90f dommac[n] domain machine default domain machine
domain context registers
0xa00...0xa0f domaddr[n] domain address
0xb00...0xb0f domptr[n] domain page table root
0xc00...0xc0f domthpc[n] domain trap handler program counter
0xd00...0xd0f domthib[n] domain trap handler immediate base

Table 2.17.: domain registers

33

2. System

2.4.1. domain control registers
this section describes the domain control registers which enable the domain extension and
provide access to last and current domain number and control the next domain number.

domain control (domcontrol)

domcontrol is a read-write register containing domain control bits.

0

V

no. name description
1 << 0 V virtual domains enable

Table 2.18.: domain control fields

domain number last (domlast)

domlast is a read-only register containing the domain number of the last domain.

0log2(ndom)

domain

domain number current (domcurr)

domcurr is a read-only register containing the domain number of the current domain.

0log2(ndom)

domain

domain number next (domnext)

domnext is a read-write register containing the domain number of the next domain.

0log2(ndom)

domain

34

2. System

2.4.2. domain routing registers
this section describes the domain routing registers that control valid domain transitions and
routing for context switching of system, domain, capability and machine traps.

domain matrix (dommatrix[ndom])

dommatrix[ndom] are ndom read-write registers containing a matrix of the domains that
the current domain is allowed to transition to as the next domain.

0ndom

allowed domains

domain system default domain (domsys[ndom])

domsys[ndom] are ndom read-write registers containing the domain number of the domain
that system traps are routed to.

0log2(ndom)

domain

domain domain default domain (domdom[ndom])

domdom[ndom] are ndom read-write registers containing the domain number of the domain
that domain traps are routed to.

0log2(ndom)

domain

domain capability default domain (domcap[ndom])

domcap[ndom] are ndom read-write registers containing the domain number of the domain
that capability traps are routed to.

0log2(ndom)

domain

domain machine default domain (dommac[ndom])

dommac[ndom] are ndom read-write registers containing the domain number of the domain
that machine traps are routed to.

0log2(ndom)

domain

35

2. System

2.4.3. domain context registers
this section describes the domain context registers that control virtual interrupt routing, page
translation and trap entry functions for domain context switching.

domain address (domaddr[ndom])

domaddr[ndom] are ndom read-write registers containing an array of the domain addresses
associated with each domain. domain context switches copy the value for the target domain
into sdomain to enable virtual interrupt delivery.

062

domain address
63

1

domain page table root (domptr[ndom])

domptr[ndom] are ndom read-write registers containing an array of the page table root
physical addresses for address translation in each domain. domain context switches copy
the value for the target domain into sptr to enable address translation.

011

ASID
1247

physical page number
63 48

sign extended

domain trap handler program counter (domthpc[ndom])

domthpc[ndom] are ndom read-write registers containing an array of the addresses for the
domain trap handler routines in each domain. the address is a virtual address interpreted in
relation to the page table root for the domain. domain context switches copy the value for
the target domain into thpc and set the program counter register.

063

program counter

domain trap handler immediate base (domthib[ndom])

domthib[ndom] are ndom read-write registers containing an array of the addresses for the
domain trap handler constants in each domain. the address is a virtual address interpreted
in relation to the page table root for the domain. domain context switches copy the value
for the target domain into thib and set the immediate base register.

063

immediate base

36

2. System

2.5. Machine extension
the architecture provides an optional machine extension that includes machine-level regis-
ters for physical memory protection and software-defined memory management.

machine registers

the following tables list the privileged machine registers:

no. name description
machine control registers
0x61 mcontrol machine control
0x62 mfeature machine feature
machine memory registers
0x63 mtlbkey machine translation lookaside buffer key
0x64 mtlbfmt machine translation lookaside buffer format
0x65 mtlbent machine translation lookaside buffer entry

Table 2.19.: machine registers

37

2. System

2.5.1. machine control registers
the section describes the privileged machine registers for machine control and features.

machine control (mcontrol)

mcontrol is a read-write register containing machine control bits.

0

V
1

P
2

S

no. name description
1 << 0 V virtual address translation enable
1 << 1 P physical permissions check enable
1 << 2 S software page translation enable

Table 2.20.: machine control fields

machine feature (mfeature)

mfeature is a read-only register containing machine feature bits.

0

V
1

P
2

S

no. name description
1 << 0 V virtual address translation feature
1 << 1 P physical permissions check feature
1 << 2 S software page translation feature

Table 2.21.: machine feature fields

38

2. System

2.5.2. machine memory registers
the section describes the privileged machine registers for address translation. the registers
in this section enable a machine-fault trap handler to perform address translation by walking
the page table structures and populating the TLB1 as part of a software-defined MMU2.

machine translation lookaside buffer key (mtlbkey)

mtlbkey is a read-only register containing the machine fault translation virtual address for
the current page translation miss fault.

11 0

page offset
1243

page number
4447

AS
63 48

sign extended

machine translation lookaside buffer format (mtlbfmt)

mtlbfmt is a read-write register containing the machine fault address space identifier and
page table format for the current page translation miss fault.

011

ASID
1215

fmt

no. size description
0 212 v48 page table entry 4KiB page
1 221 v48 page table entry 2MiB page
2 230 v48 page table entry 1GiB page

Table 2.22.: 64-bit machine translation lookaside buffer format field

machine translation lookaside buffer entry (mtlbent)

mtlbent is a read-write register containing the machine fault translation lookaside buffer
entry for the current page translation miss fault. this register is populated by the page trans-
lation miss fault handler with a physical page number, a page color, plus several permission
and metadata bits in the same format as the metadata bits defined for page table entries.
table 2.26 in the address translation section describes the metadata bits.

0

V

1

R

2

W

3

X

4

T

5

G

6

A

7

Dphysical page number
811

color
1263 48

sign extended

Figure 2.1.: 64-bit machine translation lookaside buffer entry structure.

1Translation Lookaside Buffer
2Memory Management Unit

39

2. System

2.6. Environment extension
the architecture provides an optional environment extension that includes machine-level
registers for diagnostics, warm reset, cold reset, and power off.

environment registers

the following tables list the privileged environment registers:

no. name description
environment control registers
0x71 econtrol environment control

Table 2.23.: environment registers

40

2. System

2.6.1. environment control registers
the section describes the privileged registers for environment control.

environment control (econtrol)

econtrol is a read-write register used to issue machine-level environment control com-
mands. the OP field contains an opcode with values for: diagnostic, warm reset, cold reset
and power off. the cause code field is recorded in an environment log.

063 56 55

OP cause code

no. description
0 diagnostic
1 warm reset
2 cold reset
3 power off

Table 2.24.: environment control opcode field

41

2. System

2.7. Address translation
the architecture provides for page-based virtual to physical address translation using a page
table trie structure composed of index pages containing arrays of page table entries. a page
walker reads the structure from the root pointer to leaf entries to translate virtual addresses
into physical addresses. the architecture introduces the concept of a translation address
which is an address boxed with an address space prefix (AS) designed to provide a canonical
address form for user and system virtual addresses as well as physical addresses.

2.7.1. page table structure
the section describes the dimensions for memory address translation and the trie-based page
table structure pointed to by the system page table root (sptr) register.

Page Page Page Virtual Page
Table Number Offset Address Index Page
Levels Bits Bits Bits Entries Sizes
4 9 12 44 — 48 512 4KiB, 2Mib, 1GiB

Table 2.25.: 64-bit page table dimensions

2.7.2. page table entries
page table entries are grouped into arrays within index pages which are selected by an index
derived from a portion of the virtual address. each entry contains a physical page number,
a page color, plus several permission and metadata bits. the physical page number points to
the next page table level for pointer entries or the translated physical address for leaf entries.

0

V

1

R

2

W

3

X

4

T

5

G

6

A

7

Dphysical page number
811

color
1263 48

sign extended

Figure 2.2.: 64-bit page table entry structure.

no. name description
1 << 0 V valid
1 << 1 R read
1 << 2 W write
1 << 3 X execute
1 << 4 T translate
1 << 5 G global
1 << 6 A accessed
1 << 7 D dirty

Table 2.26.: 64-bit page table entry fields

42

2. System

2.7.3. page table addresses
the page table translation system has three types of addresses: translation addresses, virtual
addresses and physical addresses. page table translation addresses have a 1 — 4 bit address
space prefix to allow them to contain user and system virtual addresses as well as physical
addresses. the page table translation and lookup virtual address structure is as follows:

11 0

page offset
1243

page number
4447

AS
63 48

sign extended

Figure 2.3.: 64-bit translation address structure.

no. name
0b0. user
0b10. system
0b110. physical

Table 2.27.: 1—4 bit translation address space prefixes.

11 0

page offset
20 12

pn[0]
29 21

pn[1]
38 30

pn[2]
47 39

pn[3]
63 48

sign extended

Figure 2.4.: 64-bit lookup virtual address structure.

2.7.4. page table translation
the page table walker performs page table lookups to translate virtual addresses into physical
addresses. the page table walker reads the page table root pointer then walks the trie-based
page table structure to find a leaf entry containing a physical page address.

page table entries with the read, write and exec permission bits clear are interpreted as pointer
entries and contain a pointer to the next-level index page, otherwise they are interpreted as
leaf entries with a final translation. entries with the write bit set must have the read bit set.
entries without the accessed bit set will fault on read accesses. entries without the dirty bit set
will fault on write accesses. the global bit prevents sptr.ASID from being associated with TLB
entries. the color field is reserved for use by system software and the capabilities extension.

if the physical permissions feature mfeature.P is present and mcontrol.P is enabled, then phys-
ical pages must be present in the page table with a self-mapping of their physical address
prefixed with (AS = physical) leading to a leaf page table entry containing its own address.
this is to allow physical page permissions to be checked. in addition to this, the physical
self-mappings for physical pages containing page table pages must have the translate bit set.

the page table lookup and virtual to physical address translation process are as follows:

43

2. System

Algorithm 1 find page table entry for translation address
1: function FIND_PAGE(type, level, ppn, ta)
2: shift← level× pn_bits+ po_bits ▷ calculate page number shift
3: tpn← (ta>> shift)∧ ((1<< pn_bits)− 1) ▷ calculate translation page number
4: pte← LOAD((ppn<< po_bits) + tpn× sizeof(PTE)) ▷ load page table entry
5: leaf ← pte.R∨ pte.W ∨ pte.X ▷ page table entry node type
6: sm← R∨W ∨ X ▷ default self map page table entry
7: if mfeature.P∧mcontrol.P∧ type= virtual then
8: pa← pte.ppn<< po_shift
9: (sm, level)← FIND_PAGE(physical, num_levels− 1, sptr.ppn, pa) ▷ load self mapping

10: if (leaf ∧ pte.ppn ̸= sm.ppn)∨ (¬leaf ∧¬sm.T) then
11: raise fault ▷ invalid self mapping
12: end if
13: end if
14: if ¬leaf ∧ level> 0 then
15: return FIND_PAGE(type, level− 1, pte.ppn, ta) ▷ follow pointer entry
16: else if ¬leaf then
17: raise fault ▷ leaf entry not found
18: end if
19: return (pte, sm, level) ▷ return page table entry
20: end function

Algorithm 2 translate virtual address to physical address
1: function TRANSLATE(op, va)
2: if ¬CHECK_CANONICAL(va, va_bits) then ▷ check address is sign-extended
3: raise fault
4: end if
5: (pte, sm, level)← FIND_PAGE(virtual, num_levels− 1, sptr.ppn, va) ▷ find page table entry
6: mask← ((1<< (level× pn_bits+ po_bits))− 1)
7: caps← (R∧ colorread[pte.color])∨ (W ∧ colorwrite[pte.color])∨ (X ∧ colorexec[pte.color])
8: user←¬((va>> (va_bits− 1))∧ 1)
9: if (¬pte.V)∨ (pte.W ∧¬pte.R) then

10: raise fault ▷ invalid write must have read
11: else if (op.R∧¬pte.R)∨ (op.W ∧¬pte.W)∨ (op.X ∧¬pte.X) then
12: raise fault ▷ invalid permissions
13: else if (sm.R∧¬pte.R)∨ (sm.W ∧¬pte.W)∨ (sm.X ∧¬pte.X) then
14: raise fault ▷ invalid self map
15: else if (cap.R∧ pte.R)∨ (cap.W ∧ pte.W)∨ (cap.X ∧ pte.X) then
16: raise fault ▷ invalid capabilities
17: else if (op.R∧¬pte.A)∨ (op.W ∧¬pte.D) then
18: raise fault ▷ invalid accessed or dirty
19: else if ¬tstatus.U ∧¬scontrol.E∧ user∧ op.X then
20: raise fault ▷ invalid user page execute
21: else if ¬tstatus.U ∧¬scontrol.A∧ user∧ op.(R∨W) then
22: raise fault ▷ invalid user page access
23: else if (pte.ppn<< po_bits)∧mask ̸= 0 then
24: raise fault ▷ invalid superpage alignment
25: end if
26: return (pte.ppn<< po_bits) + (va∧mask)
27: end function

44

3. Instructions

3.1. Instruction listing — 16-bit
3.1.1. break

15 7

imm

uimm

6 2

opcode

00000

1 0

size

00 break uimm9

the break instruction causes a debugger trap. program counter and trap cause are saved
to privileged registers for the operating system to dispatch to a debugger and the program
counter is set to a trap vector address.

3.1.2. j
15 7

imm

simm

6 2

opcode

00001

1 0

size

00 j simm9× 2

the j or jump instruction is an unconditional branch instruction that adds a relative immediate
address to the program counter. the resulting program counter address is [pc + simm9× 2].

pc = pc + simm9 * 2

3.1.3. b
15 7

imm

simm

6 2

opcode

00010

1 0

size

00 b simm9× 2

the b or branch instruction is a conditional branch instruction that adds a relative immediate
address to the program counter. if the flag register has been set by a compare instruction,
the resulting program counter address is [pc+ simm9×2], otherwise the program counter is
advanced normally.

if flag:
pc = pc + simm9 * 2

45

3. Instructions

3.1.4. ibj
15 7

imm

simm

6 2

opcode

00011

1 0

size

00 ibj simm9× 64

the ibj or immediate-block-jump instruction adds a 64-bit relative address to the immediate
base register. the resulting immediate base address is [i b+ simm9× 64].

ib = ib + simm9 * 64

3.1.5. link
15 13

rc

fun

12 7

imm

uimm

6 2

opcode

00100

1 0

size

00 link.i64 fun3, ib64(uimm6)

the link instruction loads a 64-bit constant addressed by [i b + uimm6 × 8] containing a
i32x2 relative address vector, which it adds it to (pc,ib), conditionally subtracts the source
link register (r6 or r7), then conditionally adds the difference to the destination link register
(r6 or r7), depending on the value of fun3. the type of linkage in fun3 can be one of:

value mnemonic description link-type dst-link src-link
0 jib jump jump - -
1 - - - - -
2 jalib jump-and-link call r6 -
3 jalib jump-and-link call r7 -
4 jtlib jump-to-link ret - r6
5 jtlib jump-to-link ret - r7
6 jalaib jump-and-link-add tail r6 -
7 jalaib jump-and-link-add tail r7 -

Table 3.1.: Link instruction functions

lr = 0b110 + (fun3 & 1)
cval = const-mem<i32x2>[ib + uimm6 * 8]
dval = fun3 == jalaib ? cval + auth-decrypt(reg<i32x2>[lr]) : cval
lval = fun3 == jtlib ? auth-decrypt(reg<i32x2>[lr]) : 0
(dpc,dib) = dval
(lpc,lib) = lval
pc = pc + dpc - lpc
ib = ib + dib - lib
if fun3 == jalib or fun3 == jalaib:

reg[lr] = auth-encrypt(reg<i32x2>(dpc,dib))

the auth-encrypt and auth-decrypt functions are placeholders for authenticated encryption,
and decryption of relative address vectors. authentication failures should generate a trap for
the operating system to dispatch to a control flow integrity trap handler.

46

3. Instructions

3.1.6. movh
15 13

rc

rc

12 7

imm

uimm

6 2

opcode

00101

1 0

size

00 movh.i64 rc, ib32(uimm6)

the movh or move-half-immediate-block instruction loads a 32-bit constant addressed by [i b+
uimm6× 4], which it sign-extends to 64-bits, then saves to the rc register.

reg[rc] = const-mem<i32>[ib + uimm6 * 4]

3.1.7. movw
15 13

rc

rc

12 7

imm

uimm

6 2

opcode

00110

1 0

size

00 movw.i64 rc, ib64(uimm6)

the movw or move-word-immediate-block instruction loads a 64-bit constant addressed by
[i b+ uimm6× 8] then saves it to the rc register.

reg[rc] = const-mem<i64>[ib + uimm6 * 8]

3.1.8. movi
15 13

rc

rc

12 7

imm

simm

6 2

opcode

00111

1 0

size

00 movi.i64 rc, simm6

the movi or move-immediate instruction sign-extends the immediate value in simm6 then
saves the result in the rc register.

reg[rc] = simm6

3.1.9. addi
15 13

rc

rc

12 7

imm

simm

6 2

opcode

01000

1 0

size

00 addi.i64 rc, simm6; flag

the addi or add-immediate instruction sign-extends the immediate value in simm6 then adds
it to the rc register, and carry is saved to the flag register.

result = reg[rc] + simm6
flag = result < reg[rc]
reg[rc] = result

47

3. Instructions

3.1.10. srli
15 13

rc

rc

12 7

imm

uimm

6 2

opcode

01001

1 0

size

00 srli.i64 rc, uimm6

the srli or shift-right-logical-immediate instruction performs a logical right shift by uimm6
bits of the value in the rc register. zeros are copied into the left most bits.

reg[rc] = reg<u64>[rc] >> uimm6

3.1.11. srai
15 13

rc

rc

12 7

imm

uimm

6 2

opcode

01010

1 0

size

00 srai.i64 rc, uimm6

the srai or shift-right-arithmetic-immediate instruction performs an arithmetic right shift by
uimm6 bits of the value in the rc register. the sign is copied into the left most bits.

reg[rc] = reg<i64>[rc] >> uimm6

3.1.12. slli
15 13

rc

rc

12 7

imm

uimm

6 2

opcode

01011

1 0

size

00 slli.i64 rc, uimm6

the slli or shift-left-logical-immediate instruction performs a logical left shift by uimm6 bits of
the value in the rc register. zeros are copied into the right most bits.

reg[rc] = reg[rc] << uimm6

3.1.13. addh
15 13

rc

rc

12 7

imm

uimm

6 2

opcode

01100

1 0

size

00 addh.i64 rc, ib32(uimm6); flag

the addh or add-half-immediate-block instruction loads a 32-bit constant addressed by [i b+
uimm6×4], which it sign-extends to 64-bits, then adds to the rc register, and carry is saved
to the flag register.

result = reg[rc] + const-mem<i32>[ib + uimm6 * 4]
flag = result < reg[rc]
reg[rc] = result

48

3. Instructions

3.1.14. leapc
15 13

rc

rc

12 7

imm

uimm

6 2

opcode

01101

1 0

size

00 leapc.i64 rc, ib32(uimm6)(pc)

the leapc or load-effective-address-pc instruction loads a 32-bit constant addressed by [i b +
uimm6× 4], which it sign-extends to 64-bits, adds it to the program counter, and saves the
result in the rc register.

reg[rc] = pc + const-mem<i32>[ib + uimm6 * 4]

3.1.15. loadpc
15 13

rc

rc

12 7

imm

uimm

6 2

opcode

01110

1 0

size

00 loadpc.i64 rc, ib32(uimm6)(pc)

the loadpc instruction loads a 32-bit constant addressed by [i b+ uimm6× 4] which it sign-
extends to 64-bit, adds it to the program counter to form an address, then loads a 64-bit
value from memory at that address and saves the result in the rc register.

reg[rc] = mem<i64>[pc + const-mem<i32>[ib + uimm6 * 4]]

3.1.16. storepc
15 13

rc

rc

12 7

imm

uimm

6 2

opcode

01111

1 0

size

00 storepc.i64 rc, ib32(uimm6)(pc)

the storepc instruction loads a 32-bit constant addressed by [i b+ uimm6× 4] which it sign-
extends to 64-bit, adds it to the program counter to form an address, then stores to memory
at that address a 64-bit value from the rc register.

mem<i64>[pc + const-mem<i32>[ib + uimm6 * 4]] = reg[rc]

3.1.17. load
15 13

rc

rc

12 10

rb

rb

9 7

imm

uimm

6 2

opcode

10000

1 0

size

00 load.i64 rc, (uimm3× 8)(rb)

the load instruction computes the address [r b+ uimm3× 8] then loads a 64-bit value from
memory at that address and saves the result in the rc register.

reg[rc] = mem<i64>[reg[rb] + uimm3 * 8]

49

3. Instructions

3.1.18. store
15 13

rc

rc

12 10

rb

rb

9 7

imm

uimm

6 2

opcode

10001

1 0

size

00 store.i64 rc, (uimm3× 8)(rb)

the store instruction computes the address [r b + uimm3 × 8] then stores a 64-bit value to
memory at that address containing a 64-bit value from the rc register.

mem<i64>[reg[rb] + uimm3 * 8] = reg[rc]

3.1.19. compare
15 13

rc

rc

12 10

rb

rb

9 7

imm

fun

6 2

opcode

10010

1 0

size

00 cmp.i64 rc, rb, fun3

the compare instruction performs a comparison between the value in rb and rc then saves
the result in the flag register. the compare opcode is also used to perform conditional move
whereby the rb register is copied into the rc if the flag register is set. the type of comparsion
in fun3 can be one of:

value mnemonic description
0 lt less than (signed)
1 ge greather or equal (signed)
2 eq equal
3 ne not equal
4 ltu less than (unsigned)
5 geu greater or equal (unsigned)
6 cmov conditional move
7 ncmov negated conditional move

Table 3.2.: Compare instruction functions

match fun3
| lt -> flag = reg<i64>[rc] < reg<i64>[rb]
| ge -> flag = reg<i64>[rc] >= reg<i64>[rb]
| eq -> flag = reg[rc] = reg[rb]
| ne -> flag = reg[rc] != reg[rb]
| ltu -> flag = reg<u64>[rc] < reg<u64>[rb]
| geu -> flag = reg<u64>[rc] >= reg<u64>[rb]
| cmov -> if flag:

reg[rc] = reg[rb]
| ncmov -> if not flag:

reg[rc] = reg[rb]

50

3. Instructions

3.1.20. logic
15 13

rc

rc

12 10

rb

rb

9 7

imm

fun

6 2

opcode

10011

1 0

size

00 logic.i64 rc, rb, fun3

the logic instruction performs a logic operation on the value in the rb register then stores the
result in the rc register. the type of logic operations in fun3 can be one of:

value mnemonic description
0 mv move
1 not logical not
2 neg negate
3 bswap bswap
4 ctz count trailing zeros
5 clz count leading zeros
6 ctpop count population
7 sext sign extend

Table 3.3.: Logic instruction functions

match fun3
| mov -> reg[rc] = reg[rb]
| not -> reg[rc] = ~reg[rb]
| neg -> reg[rc] = -reg[rb]
| bswap -> reg[rc] = bswap(reg[rb])
| ctz -> reg[rc] = ctz(reg[rb])
| clz -> reg[rc] = clz(reg[rb])
| ctpop -> reg[rc] = ctpop(reg[rb])
| sext -> reg[rc] = sext(reg[rb])

3.1.21. pin
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

10100

1 0

size

00 pin.i64 rc, rb, ra

the pin or pack-indirect instruction packs two absolute addresses as an i32x2 (pc,ib) relative
address vector. the register ra is subtracted from the program counter, and the register rb is
subtracted from the immediate base register, and the results are packed into an i32x2 relative
address vector and saved to the register rc.

lpc = int<i32>(pc - reg[ra])
lib = int<i32>(ib - reg[rb])
lval = (lpc,lib)
reg[rc] = auth-encrypt(lval)

51

3. Instructions

3.1.22. and
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

10101

1 0

size

00 and.i64 rc, rb, ra

the and instruction performs a logical-and of the register rb and the register ra and saves the
result in the register rc.

reg[rc] = reg[rb] & reg[ra]

3.1.23. or
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

10110

1 0

size

00 or.i64 rc, rb, ra

the or instruction performs a logical-or of the register rb and the register ra and saves the
result in the register rc.

reg[rc] = reg[rb] | reg[ra]

3.1.24. xor
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

10111

1 0

size

00 xor.i64 rc, rb, ra

the xor instruction performs a logical-exclusive-or of the register rb and the register ra and
saves the result in the register rc.

reg[rc] = reg[rb] ^ reg[ra]

3.1.25. add
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11000

1 0

size

00 add.i64 rc, rb, ra; flag

the add instruction adds the rb register to the ra register and saves the result in the rc register,
and carry is saved to the flag register.

result = reg[rb] + reg[ra]
flag = result < reg[rb]
reg[rc] = result

52

3. Instructions

3.1.26. srl
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11001

1 0

size

00 srl.i64 rc, rb, ra

the srl or shift-right-logical instruction performs a logical right shift of the value in the rb
register by the number of bits in register ra then saves the result in the rc register. zeros are
copied into the right most bits.

reg[rc] = reg<u64>[rb] >> reg[ra]

3.1.27. sra
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11010

1 0

size

00 sra.i64 rc, rb, ra

the sra or shift-right-arithmetic instruction performs an arithmetic right shift of the value in
the rb register by the number of bits in register ra then saves the result in the rc register. sign
is copied into the right most bits.

reg[rc] = reg<i64>[rb] >> reg[ra]

3.1.28. sll
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11011

1 0

size

00 sll.i64 rc, rb, ra

the sll or shift-left-logical instruction performs a logical left shift of the value in the rb register
by the number of bits in register ra then saves the result in the rc register.

reg[rc] = reg[rb] << reg[ra]

3.1.29. sub
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11100

1 0

size

00 sub.i64 rc, rb, ra; flag

the sub instruction subtracts the ra register from the rb register and saves the result in the
rc register, and carry not borrow is saved to the flag register. note: this differs from borrow
semantics; flag is true carry and can be used with adc or sbc instructions without inversion.

result = reg[rb] - reg[ra]
flag = reg[rb] >= reg[ra]
reg[rc] = result

53

3. Instructions

3.1.30. mul
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11101

1 0

size

00 mul.i64 rc, rb, ra

the mul instruction performs signed multiplication of the rb register with the ra register and
saves the result in the rc register.

reg[rc] = reg[rb] * reg[ra]

3.1.31. div
15 13

rc

rc

12 10

rb

rb

9 7

ra

ra

6 2

opcode

11110

1 0

size

00 div.i64 rc, rb, ra

the div instruction performs signed division of the rb register by the ra register and saves the
result in the rc register. division by zero causes the flag to be set and zero to be stored in the
rc register. a subsequent branch can handle the division by zero.

flag = reg[ra] == 0
if flag:

reg[rc] = 0
else:

reg[rc] = reg[rb] / reg[ra]

3.1.32. illegal
15 7

imm

uimm

6 2

opcode

11111

1 0

size

00 illegal uimm9

the illegal instruction causes an illegal instruction trap. program counter and trap cause
are saved to privileged registers for the operating system to dispatch to an illegal instruction
handler and the program counter is set to a trap vector address.

54

4. Assembly

4.1. Introduction
this glyph assembly language reference begins with an introduction to assembler and linker
concepts and terminology, followed by sections describing the glyph assembler directives,
and pseudo-instruction aliases. section 3 contains a complete listing of instruction.

4.2. Concepts
this section covers assembler high level concepts required to understand the concepts in-
volved in assembling and linking executable code from source files. the terminology used in
this section is applicable to the PE/COFF, ELF and Mach-O file formats.

4.2.1. assembly
assembly files contains assembly language directives, macros and instructions describing
program code and data. they can be handwritten or emitted by a compiler. an assembly file
is the input file to the assembler and the output from the assembler is an object file.

4.2.2. object
object files contain compiled relocatable object code and data emitted by the assembler. an
object file cannot be run, rather it is used as input to the linker in a program linking step
which combines them to produce an executable file or shared library.

4.2.3. archive
archive files contain collections of relocatable object files and are typically referred to as
static libraries. archive files use a simple format that appends together a set of object files
with an index listing the object files contained in the archive. thin archive files just contain
the index listing the object files without any associated data.

4.2.4. executable
executable files contain compiled relocatable object code and data that has been linked to-
gether by a linker in a program linking step using multple object files, archive files and shared
libraries as input. executable files can be statically or dynamically linked. dynamically linked
executables files express dependencies on shared libraries.

55

4. Assembly

4.2.5. shared library
shared library files contain compiled relocatable object code and data that have been linked
together by a linker in a program linking step using multple object files, archive files and
shared libraries as input. shared libraries are dynamically linked by a runtime linker, and
they express dependencies on other shared libraries which need to be loaded at runtime.

4.2.6. section
a section is a name for a region of code or data in an object file, executable file or shared
library file. the files can be made up of multiple sections where each section corresponds to
several types of executable code or data. this list contains the most common types:

• .text is a read-only section containing executable code

• .const is a read-only section containing immediate blocks

• .data is a read-write section containing global or static variables

• .rodata is a read-only section containing read-only variables

• .bss is a read-write section containing uninitialized data

4.2.7. segment
segments are loadable regions of code or data in an an executable or shared library. segments
describe virtual addresses, file offsets and memory access permissions for mapped sections.
in ELF, a segment can map to one or more sections. in PE/COFF sections are mapped directly.
in Mach-O, sections are contained within a small set of specific segment types.

4.2.8. symbol
symbols are metadata table entries that contains a name with a mapping to an address.
symbols are present in object files and dynamic symbols are present in shared libraries and
executables. they can be referred to in relocation entries and debugging metadata.

4.2.9. relocation
relocations are metadata table entries used to update relocatable addresses during linking.
relocations contains a type, a file offset pointing to text or data, and a pointer to a symbol
name whose address needs to be updated during the linking step. relocations can be present
in object files and dynamic relocations are present in shared libraries and executables.

4.2.10. program linking
program linking is the process of combining multiple relocatable object files by merging and
aligning sections, resolving symbol references across files, assigning final symbol addresses,
applying relocation fixups using relocation entries, and adding debug metadata.

56

4. Assembly

4.3. Directives
the assembler implements a number of directives that control the assembly of instructions
into object files. these directives are based on the AT&T System V assembler [2] and the
GNU assembler [6], with some additions. they provide the ability to include arbitrary data,
align data, export symbols, switch sections, define constants, and emit metadata.

the following table lists glyph assembler directives:

Directive Arguments Description
Data directives
.byte expression-list 8-bit comma separated words
.short expression-list 16-bit comma separated words
.long expression-list 32-bit comma separated words
.quad expression-list 64-bit comma separated words
.octa expression-list 128-bit comma separated words
.string “string” emit string
.zero integer emit zeroes
Alignment directives
.align pow2 [,pad_val=0] [,max] align to power of 2
.balign bytes [,pad_val=0] byte align
Symbol directives
.globl symbol_name,const_name emit symbol (global scope)
.local symbol_name,const_name emit symbol (local scope)
Section directives
.text emit .text section or make current
.const emit .const section or make current
.data emit .data section or make current
.rodata emit .rodata section or make current
.bss emit .bss section or make current
.common symbol_name,size,align emit common object to .bss section
.section section_name emit section (default .text) or make current
Miscellaneous directives
.equ name, value constant definition
.file “filename” emit filename symbol
.ident “string” emit identification string
.size symbol,symbol emit symbol size
.type symbol,@function emit symbol type

Table 4.1.: Assembler directives

57

4. Assembly

4.4. Pseudo-instructions
the assembler implements a number of convenience psuedo-instruction aliases that are formed
from regular instructions, but have implicit or deduced arguments.

the following table lists glyph assembler pseudo instruction aliases:

Pseudo-instruction Expansion Description
nop or.i64 r0,r0,r0 no-operation
li rc, expression (several expansions) load immediate
la rc, symbol (several expansions) load address
call symbol jalib.i64 ibcall(text-label,const-label) procedure call
ret jtlib.i64 ibret(text-label,const-label) procedure return
jib.i64 ib64(uimm6) link.i64 ib64(uimm6), jib jump-immmediate-block
jalib.i64 rc, ib64(uimm6) link.i64 rc, ib64(uimm6), jalib jump-and-link-immmediate-block
jtlib.i64 rc, ib64(uimm6) link.i64 rc, ib64(uimm6), jtlib jump-to-link-immmediate-block
jalaib.i64 rc, ib64(uimm6) link.i64 rc, ib64(uimm6), jalaib jump-and-link-add-immmediate-block
cmp.lt.i64 rc, rb compare.i64 rc, rb, lt compare less than (signed)
cmp.gt.i64 rc, rb compare.i64 rb, rc, lt compare greater than (signed)
cmp.le.i64 rc, rb compare.i64 rb, rc, ge compare less or equal (signed)
cmp.ge.i64 rc, rb compare.i64 rc, rb, ge compare greater or equal (signed)
cmp.eq.i64 rc, rb compare.i64 rc, rb, eq compare equal
cmp.ne.i64 rc, rb compare.i64 rc, rb, ne compare not equal
cmp.ltu.i64 rc, rb compare.i64 rc, rb, ltu compare less than (unsigned)
cmp.gtu.i64 rc, rb compare.i64 rb, rc, ltu compare greater than (unsigned)
cmp.leu.i64 rc, rb compare.i64 rb, rc, geu compare less or equal (unsigned)
cmp.geu.i64 rc, rb compare.i64 rc, rb, geu compare greater or equal (unsigned)
cmov.i64 rc, rb compare.i64 rc, rb, cmov conditional move
ncmov.i64 rc, rb compare.i64 rc, rb, ncmov negated conditional move
mov.i64 rc, rb logic.i64 rc, rb, mov copy register
not.i64 rc, rb logic.i64 rc, rb, not logical not
neg.i64 rc, rb logic.i64 rc, rb, neg signed negate
bswap.i64 rc, rb logic.i64 rc, rb, bswap byte swap
ctz.i64 rc, rb logic.i64 rc, rb, ctz count trailing zeros
clz.i64 rc, rb logic.i64 rc, rb, clz count leading zeroes
ctpop.i64 rc, rb logic.i64 rc, rb, ctpop count population
sext.i64 rc, rb logic.i64 rc, rb, sext sign extend

Table 4.2.: Pseudo instructions

58

4. Assembly

4.5. Calling convention
4.5.1. calling convention — 16-bit
the 16-bit instruction packet, while intended to be used in conjunction with the larger op-
codes, is designed as a complete subset, so there is an ABI variant that targets a subset of
the instruction set architecture that only uses the 16-bit opcodes.

the register assignment for the 16-bit subset was chosen with this rationale:

• 2 blocks of 4 contiguous non-volatile callee-save and volatile caller-save registers.

• 3 special registers, 2 argument registers, 1 temporary register, and 3 save registers.

• 3 save registers to avoid excessive spilling around function calls.

• 1 temporary register to avoid spilling arguments to free a temporary.

the calling convention for the 16-bit subset is as follows:

• immediate base ib is set by call instructions and must point to a valid immediate
block on function entry. function symbols are exported with two labels; one in the
.text section, and one in the .const section. immediate base must be restored to the
entry value in the function epilogue before it can be restored by ret.

• argument registers a0 and a1 are used for the first two arguments, and the remaining
arguments are passed on the stack. return value is places in a0 and a1, temporary
register t0 is a volatile register, and frame pointer (if enabled) uses s0. there are two
more non-volatile callee-save registers, s1 and s2.

the following table outlines the 16-bit register allocation showing register name alias, de-
scription, and non-volatile callee-save or volatile caller-save status.

name alias description save
ib immediate base callee
r0 sp stack pointer callee
r1 s0/fp saved register 0 / frame pointer callee
r2 s1 saved register 1 callee
r3 s2 saved register 2 callee
r4 a0 argument register 0 caller
r5 a1 argument register 1 caller
r6 t0 temporary register 0 caller
r7 ra return address / (pc,ib) link vector caller

Table 4.3.: 16-bit register assignment

59

A. Appendix

A.1. Opcode summary — 16-bit
15 13 12 10 9 7 6 2 1 0

uimm 00000 00 break uimm9
simm 00001 00 j simm9× 2
simm 00010 00 b simm9× 2
simm 00011 00 ibj simm9× 64

fun uimm 00100 00 link.i64 fun3, ib64(uimm6)
rc uimm 00101 00 movh.i64 rc, ib32(uimm6)
rc uimm 00110 00 movw.i64 rc, ib64(uimm6)
rc simm 00111 00 movi.i64 rc, simm6
rc simm 01000 00 addi.i64 rc, simm6; flag
rc uimm 01001 00 srli.i64 rc, uimm6
rc uimm 01010 00 srai.i64 rc, uimm6
rc uimm 01011 00 slli.i64 rc, uimm6
rc uimm 01100 00 addh.i64 rc, ib32(uimm6); flag
rc uimm 01101 00 leapc.i64 rc, ib32(uimm6)(pc)
rc uimm 01110 00 loadpc.i64 rc, ib32(uimm6)(pc)
rc uimm 01111 00 storepc.i64 rc, ib32(uimm6)(pc)
rc rb uimm 10000 00 load.i64 rc, (uimm3× 8)(rb)
rc rb uimm 10001 00 store.i64 rc, (uimm3× 8)(rb)
rc rb fun 10010 00 compare.i64 rc, rb, fun3
rc rb fun 10011 00 logic.i64 rc, rb, fun3
rc rb ra 10100 00 pin.i64 rc, rb, ra
rc rb ra 10101 00 and.i64 rc, rb, ra
rc rb ra 10110 00 or.i64 rc, rb, ra
rc rb ra 10111 00 xor.i64 rc, rb, ra
rc rb ra 11000 00 add.i64 rc, rb, ra; flag
rc rb ra 11001 00 srl.i64 rc, rb, ra
rc rb ra 11010 00 sra.i64 rc, rb, ra
rc rb ra 11011 00 sll.i64 rc, rb, ra
rc rb ra 11100 00 sub.i64 rc, rb, ra; flag
rc rb ra 11101 00 mul.i64 rc, rb, ra
rc rb ra 11110 00 div.i64 rc, rb, ra

uimm 11111 00 illegal uimm9

operand opcode size

60

References
[1] Howard H. Aiken and Grace Hopper. A Manual of Operation for the Automatic Sequence Con-

trolled Calculator. Tech. rep. Describes the Harvard Mark I architecture with dedicated instruc-
tion memory. Harvard University Computation Laboratory, 1946.

[2] AT&T Bell Laboratories. UNIX® System V Release 4: Assembler and Machine-Level Debugging
Guide. Describes AT&T assembler directives and syntax used in UNIX® System V Release 4.
Prentice Hall, 1990. ISBN: 0-13-947116-4.

[3] Paul Barham et al. “Xen and the Art of Virtualization”. In: Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (SOSP). Bolton Landing, NY, USA: ACM, 2003, pp. 164–
177. DOI: 10.1145/945445.945462.

[4] J. Cocke and V. Markstein. “The Evolution of RISC Technology at IBM”. In: IBM Journal of
Research and Development 34.1 (1990). Reviews the IBM 801’s architecture and its influence
on later RISC systems, pp. 4–11. DOI: 10.1147/rd.341.0004.

[5] DWARF Debugging Information Format Workgroup. LEB128 (Little Endian Base 128) En-
coding. Section 7.6: Variable Length Data. Free Standards Group, 2006. URL: https://
dwarfstd.org/doc/Dwarf3.pdf.

[6] Free Software Foundation. Using as: The GNU Assembler. Part of GNU Binutils. GNU Project.
1991. URL: https://sourceware.org/binutils/docs/as/.

[7] Advanced Micro Devices Inc. “Accessing an extended register set in an extended register
mode”. Patent US6877084B1. Filed 2001-04-02. Granted 2005-04-05. Expired 2023-06-18.
Apr. 2005. URL: https://patents.google.com/patent/US6877084B1.

[8] Cray Research LLC. “Data processing system for processing one and two parcel instructions”.
Patent US5717881A. Filed 1995-06-07. Granted 1998-02-10. Expired 2015-02-10. Feb. 1998.
URL: https://patents.google.com/patent/US5717881A.

[9] John von Neumann. First Draft of a Report on the EDVAC. Tech. rep. Seminal report introducing
the stored-program concept, later known as the Von Neumann architecture. Moore School of
Electrical Engineering, University of Pennsylvania, 1945.

[10] David A. Patterson and John L. Hennessy. Computer Organization and Design: The Hardware
Software Interface. 5th. Describes the classic 5-stage RISC pipeline: fetch, decode, execute,
memory, write-back. Morgan Kaufmann, 2013. ISBN: 9780124077263.

[11] Ray J. Solomonoff. “A Formal Theory of Inductive Inference. Parts I and II”. In: Information
and Control 7.1-2 (1964). Introduces the three-tape Universal Prefix Turing Machine model,
pp. 1–22, 224–254. DOI: 10.1016/S0019-9958(64)90223-2.

[12] Alan M. Turing. “On Computable Numbers, with an Application to the Entscheidungsprob-
lem”. In: Proceedings of the London Mathematical Society. 2nd ser. 42 (1936). A theoretical
model of computation, pp. 230–265. DOI: 10.1112/plms/s2-42.1.230.

61

